The iteration digraphs of finite commutative rings
Autor: | Yangjiang WEI, Gaohua TANG |
---|---|
Jazyk: | turečtina |
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Volume: 39, Issue: 6 872-883 Turkish Journal of Mathematics |
ISSN: | 1300-0098 1303-6149 |
Popis: | For a finite commutative ring $S$ (resp., a finite abelian group $S$) and a positive integer $k\geqslant2$, we construct an iteration digraph $G(S, k)$ whose vertex set is $S$ and for which there is a directed edge from $a\in S$ to $b\in S$ if $b=a^k$. We generalize some previous results of the iteration digraphs from the ring $\mathbb{Z}_n$ of integers modulo $n$ to finite commutative rings, and establish a necessary and sufficient condition for $G(S, k_1)$ and $G(S, k_2)$ to be isomorphic for any finite abelian group $S$. |
Databáze: | OpenAIRE |
Externí odkaz: |