On the characterization of flowering curves using Gaussian mixture models
Autor: | Gilles Michel, Frédéric Proïa, Tatiana Thouroude, Jérémy Clotault, Alix Pernet |
---|---|
Přispěvatelé: | Laboratoire Angevin de Recherche en Mathématiques (LAREMA), Université d'Angers (UA)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche en Horticulture et Semences (IRHS), AGROCAMPUS OUEST-Institut National de la Recherche Agronomique (INRA)-Université d'Angers (UA), Université d'Angers (UA)-Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de la Recherche Agronomique (INRA)-Université d'Angers (UA) |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
0106 biological sciences
0301 basic medicine Statistics and Probability FOS: Computer and information sciences Reblooming behavior Normal Distribution Principal component analysis Flowers Rosa Quantitative Biology - Quantitative Methods Statistics - Applications 01 natural sciences General Biochemistry Genetics and Molecular Biology Normal distribution Correlation Set (abstract data type) 03 medical and health sciences [MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] Statistics [SDV.BV]Life Sciences [q-bio]/Vegetal Biology Computer Simulation Applications (stat.AP) Classification of curves Quantitative Methods (q-bio.QM) Mathematics Flowering curves Models Statistical General Immunology and Microbiology Basis (linear algebra) Characterization of curves Applied Mathematics General Medicine Mixture model Characterization (materials science) 030104 developmental biology Recurrent flowering Modeling and Simulation FOS: Biological sciences Longitudinal k-means algorithm Gaussian mixture models General Agricultural and Biological Sciences Selection criterion Algorithms 010606 plant biology & botany |
Zdroj: | Journal of Theoretical Biology Journal of Theoretical Biology, Elsevier, 2016, 402, pp.75-88. ⟨10.1016/j.jtbi.2016.04.022⟩ |
ISSN: | 0022-5193 1095-8541 |
DOI: | 10.1016/j.jtbi.2016.04.022⟩ |
Popis: | In this paper, we develop a statistical methodology applied to the characterization of flowering curves using Gaussian mixture models. Our study relies on a set of rosebushes flowering data, and Gaussian mixture models are mainly used to quantify the reblooming properties of each one. In this regard, we also suggest our own selection criterion to take into account the lack of symmetry of most of the flowering curves. Three classes are created on the basis of a principal component analysis conducted on a set of reblooming indicators, and a subclassification is made using a longitudinal $k$--means algorithm which also highlights the role played by the precocity of the flowering. In this way, we obtain an overview of the correlations between the features we decided to retain on each curve. In particular, results suggest the lack of correlation between reblooming and flowering precocity. The pertinent indicators obtained in this study will be a first step towards the comprehension of the environmental and genetic control of these biological processes. Comment: 28 pages, 27 figures |
Databáze: | OpenAIRE |
Externí odkaz: |