INFERNO: a fire and emissions scheme for the UK Met Office's Unified Model
Autor: | Richard Gilham, Stephen Sitch, Gerd A. Folberth, Apostolos Voulgarakis, Stéphane Mangeon, Anna B. Harper |
---|---|
Rok vydání: | 2016 |
Předmět: |
010504 meteorology & atmospheric sciences
Meteorology lcsh:QE1-996.5 04 Earth Sciences Fuel load Vegetation Unified Model 15. Life on land 010501 environmental sciences 7. Clean energy 01 natural sciences lcsh:Geology Earth system science Atmosphere 13. Climate action Environmental science Joint (building) Precipitation 0105 earth and related environmental sciences Flammability |
Zdroj: | Geoscientific Model Development, Vol 9, Iss 8, Pp 2685-2700 (2016) |
ISSN: | 1991-9603 |
DOI: | 10.5194/gmd-9-2685-2016 |
Popis: | Warm and dry climatological conditions favour the occurrence of forest fires. These fires then become a significant emission source to the atmosphere. Despite this global importance, fires are a local phenomenon and are difficult to represent in large-scale Earth system models (ESMs). To address this, the INteractive Fire and Emission algoRithm for Natural envirOnments (INFERNO) was developed. INFERNO follows a reduced complexity approach and is intended for decadal- to centennial-scale climate simulations and assessment models for policy making. Fuel flammability is simulated using temperature, relative humidity (RH) and fuel load as well as precipitation and soil moisture. Combining flammability with ignitions and vegetation, the burnt area is diagnosed. Emissions of carbon and key species are estimated using the carbon scheme in the Joint UK Land Environment Simulator (JULES) land surface model. JULES also possesses fire index diagnostics, which we document and compare with our fire scheme. We found INFERNO captured global burnt area variability better than individual indices, and these performed best for their native regions. Two meteorology data sets and three ignition modes are used to validate the model. INFERNO is shown to effectively diagnose global fire occurrence (R = 0.66) and emissions (R = 0.59) through an approach appropriate to the complexity of an ESM, although regional biases remain. |
Databáze: | OpenAIRE |
Externí odkaz: |