On the nth record gap between primes in an arithmetic progression
Autor: | Alexei Kourbatov |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | International Mathematical Forum. 13:65-78 |
ISSN: | 1314-7536 |
DOI: | 10.12988/imf.2018.712103 |
Popis: | Let $q>r\ge1$ be coprime integers. Let $R(n,q,r)$ be the $n$th record gap between primes in the arithmetic progression $r$, $r+q$, $r+2q,\ldots,$ and denote by $N_{q,r}(x)$ the number of such records observed below $x$. For $x\to\infty$, we heuristically argue that if the limit of $N_{q,r}(x)/\log x$ exists, then the limit is 2. We also conjecture that $R(n,q,r)=O_q(n^2)$. Numerical evidence supports the conjectural (a.s.) upper bound $$R(n,q,r) Comment: 14 pages, 4 figures, 2 tables. Sequel to arXiv:1610.03340 |
Databáze: | OpenAIRE |
Externí odkaz: |