On the nth record gap between primes in an arithmetic progression

Autor: Alexei Kourbatov
Rok vydání: 2018
Předmět:
Zdroj: International Mathematical Forum. 13:65-78
ISSN: 1314-7536
DOI: 10.12988/imf.2018.712103
Popis: Let $q>r\ge1$ be coprime integers. Let $R(n,q,r)$ be the $n$th record gap between primes in the arithmetic progression $r$, $r+q$, $r+2q,\ldots,$ and denote by $N_{q,r}(x)$ the number of such records observed below $x$. For $x\to\infty$, we heuristically argue that if the limit of $N_{q,r}(x)/\log x$ exists, then the limit is 2. We also conjecture that $R(n,q,r)=O_q(n^2)$. Numerical evidence supports the conjectural (a.s.) upper bound $$R(n,q,r)
Comment: 14 pages, 4 figures, 2 tables. Sequel to arXiv:1610.03340
Databáze: OpenAIRE