One-shot Learning Landmarks Detection

Autor: Clair Vandersteen, François Patou, Zihao Wang, Hervé Delingette, Nicolas Guevara, Charles Raffaelli
Přispěvatelé: E-Patient : Images, données & mOdèles pour la médeciNe numériquE (EPIONE), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Université Côte d'Azur (UCA), Université Côte d'Azur - Département d'orthophonie (UCA Orthophonie), Oticon Medical / Neurelec, ANR-15-IDEX-0001,UCA JEDI,Idex UCA JEDI(2015)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Lecture Notes in Computer Science
The MICCAI workshop on Data Augmentation, Labeling, and Imperfections
The MICCAI workshop on Data Augmentation, Labeling, and Imperfections, Oct 2021, strasbourg, France. pp.163-172
Deep Generative Models, and Data Augmentation, Labelling, and Imperfections ISBN: 9783030882099
DGM4MICCAI/DALI@MICCAI
MICCAI 2021-Workshop on Data Augmentation, Labeling, and Imperfections
MICCAI 2021-Workshop on Data Augmentation, Labeling, and Imperfections, Oct 2021, strasbourg, France. pp.163-172, ⟨10.1007/978-3-030-88210-5_15⟩
ISSN: 0302-9743
DOI: 10.1007/978-3-030-88210-5_15⟩
Popis: International audience; Landmark detection in medical images is important for many clinical applications. Learning-based landmark detection is successful at solving some problems but it usually requires a large number of annotated datasets for the training stage. In addition, traditional methodsusually fail for the landmark detection of fine objects. In this paper, we tackle the issue of automatic landmark annotation in 3D volumetricimages from a single example based on a one-shot learning method. It involves the iterative training of a shallow convolutional neural network combined with a 3D registration algorithm in order to perform automatic organ localization and landmark matching. We investigated both qualitatively and quantitatively the performance of the proposed approach on clinical temporal bone CT volumes. The results show that our oneshot learning scheme converges well and leads to a good accuracy of the landmark positions.
Databáze: OpenAIRE