On equivalence of super log Sobolev and Nash type inequalities

Autor: Marco Biroli, Patrick Maheux
Přispěvatelé: Dipartimento di Matematica (DIPARTIMENTO DI MATEMATICA), Politecnico di Milano [Milan] (POLIMI), Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)
Rok vydání: 2014
Předmět:
Zdroj: Colloquium Mathematicum
Colloquium Mathematicum, 2014, 137 (2), pp.189-208. ⟨10.4064/cm137-2-4⟩
ISSN: 1730-6302
0010-1354
DOI: 10.4064/cm137-2-4
Popis: Several years ago, a French version was available but with a limited diffusion.Here is the final version to appear in Colloquium Mathematicum.(Theorem 4.1 statement (2) corrected); International audience; We prove the equivalence of Nash type and super logSobolev inequalities for Dirichlet forms. We also show that both inequalities are equivalent to Orlicz-Sobolev type inequalities. No ultracontractivity of the semigroup is assumed. It is known that there is no equivalence be- tween super log Sobolev or Nash type inequalities and ultracontractiv- ity. We discuss Davies-Simon’s counterexample as borderline case of this equivalence and related open problems.
Databáze: OpenAIRE