The mathematical background of proving processes in discrete optimization - Exemplification with Research Situations for the Classroom

Autor: Cecile Ouvrier-Buffet, Sylvain Gravier
Přispěvatelé: Institut national supérieur du professorat et de l'éducation - Académie de Créteil (UPEC INSPÉ Créteil), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), Laboratoire de Didactique André Revuz (LDAR (URP_4434)), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Université de Lille-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Paris Cité (UPCité)-CY Cergy Paris Université (CY)
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: ZDM
ZDM, 2022, 54, pp.925-940. ⟨10.1007/s11858-022-01400-3⟩
ZDM, Springer Verlag, 2022, ⟨10.1007/s11858-022-01400-3⟩
ISSN: 1863-9690
1863-9704
DOI: 10.1007/s11858-022-01400-3⟩
Popis: International audience; Discrete mathematics brings interesting problems for teaching and learning proof, with accessible objects such as integers (arithmetic), graphs (modeling, order) or polyominoes (geometry). Many problems that are still open can be explained to a large public. The objects can be manipulated by simple dynamic operations (removing, adding, ‘gluing’, contracting, splitting, decomposing, etc.). All these operations can be seen as tools for proving. In this paper we particularly explore the field of ‘discrete optimization’. A theoretical background is defined by taking two main axes into account, namely, the epistemological analysis of discrete problems studied by contemporary researchers in discrete optimization and the design of adidactical situations for classrooms in the frame of the Theory of Didactical Situations. Two problems coming from ongoing research in discrete optimization (the Pentamino Exclusion and the Eight Queens problems) are developed and transposed for the classroom. They underscore the learning potentialities of discrete mathematics and epistemological obstacles concerning proving processes. They emphasize the understanding of a necessary condition and a sufficient condition and problematize the difference between optimal and optimum. They provide proofs involving partitioning strategies, greedy algorithms but also primal–dual methods leading to the concept of duality. The way such problems can be implemented in the classroom is described in a collaborative study by mathematicians and mathematics education researchers (Maths à Modeler Research Federation) through the Research Situations for the Classroom project.; Article en consultation libre ici (proposée par l'éditeur) : https://rdcu.be/cREZm
Databáze: OpenAIRE