Gradient flows for semiconvex functions on metric measure spaces – existence, uniqueness, and Lipschitz continuity

Autor: Karl-Theodor Sturm
Rok vydání: 2018
Předmět:
Zdroj: Proceedings of the American Mathematical Society
ISSN: 1088-6826
0002-9939
DOI: 10.1090/proc/14061
Popis: Given any continuous, lower bounded and $\kappa$-convex function $V$ on a metric measure space $(X,d,m)$ which is infinitesimally Hilbertian and satisfies some synthetic lower bound for the Ricci curvature in the sense of Lott-Sturm-Villani, we prove existence and uniqueness for the (downward) gradient flow for $V$. Moreover, we prove Lipschitz continuity of the flow w.r.t. the starting point $d(x_t,x'_t)\le e^{-\kappa\, t} d(x_0,x_0').$
Comment: to appear in Proc. AMS
Databáze: OpenAIRE