A new carbohydrate-active oligosaccharide dehydratase is involved in the degradation of ulvan

Autor: Theresa Dutschei, Uwe T. Bornscheuer, Christoph Suster, Nadine Gerlach, Thomas Schweder, Daniel Bartosik, Jan-Hendrik Hehemann, Marcus Bäumgen, Marko D. Mihovilovic, Christian Stanetty, Lukas Reisky
Rok vydání: 2021
Předmět:
Zdroj: The Journal of Biological Chemistry
JOURNAL OF BIOLOGICAL CHEMISTRY
ISSN: 1083-351X
Popis: Marine algae catalyze half of all global photosynthetic production of carbohydrates. Owing to their fast growth rates, Ulva spp. rapidly produce substantial amounts of carbohydrate-rich biomass and represent an emerging renewable energy and carbon resource. Their major cell wall polysaccharide is the anionic carbohydrate ulvan. Here, we describe a new enzymatic degradation pathway of the marine bacterium Formosa agariphila for ulvan oligosaccharides involving unsaturated uronic acid at the nonreducing end linked to rhamnose-3-sulfate and glucuronic or iduronic acid (Δ-Rha3S-GlcA/IdoA-Rha3S). Notably, we discovered a new dehydratase (P29_PDnc) acting on the nonreducing end of ulvan oligosaccharides, i.e., GlcA/IdoA-Rha3S, forming the aforementioned unsaturated uronic acid residue. This residue represents the substrate for GH105 glycoside hydrolases, which complements the enzymatic degradation pathway including one ulvan lyase, one multimodular sulfatase, three glycoside hydrolases, and the dehydratase P29_PDnc, the latter being described for the first time. Our research thus shows that the oligosaccharide dehydratase is involved in the degradation of carboxylated polysaccharides into monosaccharides.
Databáze: OpenAIRE