Canal surfaces in 4-dimensional euclidean space
Autor: | Betül Bulca, Kadri Arslan, Bengü Bayram, Günay Öztürk |
---|---|
Přispěvatelé: | Balıkesir Üniversitesi |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Surface (mathematics)
Control and Optimization Quantitative Biology::Tissues and Organs Physics::Medical Physics Geometry Curvature Ellipse Ellipse Curvature Quantitative Biology::Cell Behavior QA1-939 Uygulamalı İstatistik ve Olasılık Variation (astronomy) Mathematics T57-57.97 Matematik Applied mathematics. Quantitative methods Mean curvature Euclidean space Quantitative Biology::Molecular Networks Applied Mathematics Mathematical analysis Canal Surface Visualization Superconformal Surface |
Zdroj: | An International Journal of Optimization and Control: Theories & Applications, Vol 7, Iss 1, Pp 83-89 (2016) |
Popis: | Bayram, Bengü (Balikesir Author) In this paper, we study canal surfaces imbedded in 4-dimensional EuclideanspaceE4. We investigate these surface curvature properties with respect to thevariation of the normal vectors and ellipse of curvature. Some special canalsurface examples are constructed inE4. Furthermore, we obtain necessary andsufficient condition for canal surfaces to become superconformal inE4. At theend, we present the graphs of projections of canal surfaces inE3. |
Databáze: | OpenAIRE |
Externí odkaz: |