The Method of Strained Coordinates for Vibrations with Weak Unilateral Springs

Autor: Stéphane Junca, B. Rousselet
Přispěvatelé: Laboratoire Jean Alexandre Dieudonné (JAD), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2009
Předmět:
piecewise linear
[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]
approximate nonlinear normal mode
FOS: Physical sciences
Rigidity (psychology)
Physics - Classical Physics
nonlinear vibrations
Dynamical Systems (math.DS)
01 natural sciences
Piecewise linear function
[PHYS.MECA.STRU]Physics [physics]/Mechanics [physics]/Structural mechanics [physics.class-ph]
Normal mode
0103 physical sciences
FOS: Mathematics
0101 mathematics
Mathematics - Dynamical Systems
010301 acoustics
Cumulative effect
Mathematics
[PHYS.MECA.VIBR]Physics [physics]/Mechanics [physics]/Vibrations [physics.class-ph]
Applied Mathematics
34E05
74H10
74H45

Mathematical analysis
Classical Physics (physics.class-ph)
unilateral spring
010101 applied mathematics
Vibration
[SPI.MECA.STRU]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Structural mechanics [physics.class-ph]
method of strained coordinates
[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
Asymptotic expansion
Zdroj: IMA Journal of Applied Mathematics
IMA Journal of Applied Mathematics, Oxford University Press (OUP), 2011, 76 (02), pp.251-276. ⟨10.1093/imamat/hxq045⟩
ISSN: 0272-4960
1464-3634
DOI: 10.48550/arxiv.0906.2714
Popis: International audience; We study some spring mass models for a structure having a unilateral spring of small rigidity $\epsilon$. We obtain and justify an asymptotic expansion with the method of strained coordinates with new tools to handle such defects, including a non negligible cumulative effect over a long time: $T_{\epsilon} \sim {\epsilon}^{-1}$ as usual; or, for a new critical case, we can only expect: $T_{\epsilon} \sim {\epsilon}^{-1/2}$. We check numerically these results and present a purely numerical algorithm to compute ``Nonlinear Normal Modes'' (NNM); this algorithm provides results close to the asymptotic expansions but enables to compute NNM even when $\epsilon$ becomes larger.
Databáze: OpenAIRE