Midpoint-radius interval-based method to deal with uncertainty in power flow analysis
Autor: | David Defour, Federico Milano, Manuel Marin |
---|---|
Přispěvatelé: | Université de Liège, University College Dublin [Dublin] (UCD), Digits, Architectures et Logiciels Informatiques (DALI), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université de Perpignan Via Domitia (UPVD) |
Rok vydání: | 2017 |
Předmět: |
[INFO.INFO-AR]Computer Science [cs]/Hardware Architecture [cs.AR]
Midpoint-radius 020209 energy Monte Carlo method Energy Engineering and Power Technology 010103 numerical & computational mathematics 02 engineering and technology Interval (mathematics) Power ow analysis Uncertainty modelling 01 natural sciences Midpoint Interval arithmetic symbols.namesake Jacobian matrix and determinant 0202 electrical engineering electronic engineering information engineering symbols Power-flow study 0101 mathematics Electrical and Electronic Engineering Representation (mathematics) Algorithm Affine arithmetic Mathematics |
Zdroj: | Electric Power Systems Research Electric Power Systems Research, Elsevier, 2017, 147, pp.81-87. ⟨10.1016/j.epsr.2017.02.017⟩ |
ISSN: | 0378-7796 |
DOI: | 10.1016/j.epsr.2017.02.017 |
Popis: | International audience; This paper presents a novel method based on midpoint-radius interval arithmetic to deal with uncertainties in the power ow problem. The proposed technique aims at nding a balance between accuracy and computational e ciency. It relies on an original decoupling of the interval power ow equations into mid- point and radius parts. This representation allows avoiding the factorisation of an interval Jacobian matrix. Moreover, the proposed formulation is combined with an optimisation problem in order to prevent overestimation of the inter- val solution while preserving uncertainty. The proposed technique proves to be more e cient than existing approaches based on interval and a ne arithmetic and as accurate as the conventional Monte Carlo method. |
Databáze: | OpenAIRE |
Externí odkaz: |