Generalized spin models for coupled cortical feature maps obtained by coarse graining correlation based synaptic learning rules

Autor: Peter J. Thomas, Jack D. Cowan
Rok vydání: 2011
Předmět:
Zdroj: Journal of Mathematical Biology. 65:1149-1186
ISSN: 1432-1416
0303-6812
DOI: 10.1007/s00285-011-0484-7
Popis: We derive generalized spin models for the development of feedforward cortical architecture from a Hebbian synaptic learning rule in a two layer neural network with nonlinear weight constraints. Our model takes into account the effects of lateral interactions in visual cortex combining local excitation and long range effective inhibition. Our approach allows the principled derivation of developmental rules for low-dimensional feature maps, starting from high-dimensional synaptic learning rules. We incorporate the effects of smooth nonlinear constraints on net synaptic weight projected from units in the thalamic layer (the fan-out) and on the net synaptic weight received by units in the cortical layer (the fan-in). These constraints naturally couple together multiple feature maps such as orientation preference and retinotopic organization. We give a detailed illustration of the method applied to the development of the orientation preference map as a special case, in addition to deriving a model for joint pattern formation in cortical maps of orientation preference, retinotopic location, and receptive field width. We show that the combination of Hebbian learning and center-surround cortical interaction naturally leads to an orientation map development model that is closely related to the XY magnetic lattice model from statistical physics. The results presented here provide justification for phenomenological models studied in Cowan and Friedman (Advances in neural information processing systems 3, 1991), Thomas and Cowan (Phys Rev Lett 92(18):e188101, 2004) and provide a developmental model realizing the synaptic weight constraints previously assumed in Thomas and Cowan (Math Med Biol 23(2):119-138, 2006).
Databáze: OpenAIRE