A coloring problem for infinite words

Autor: Luca Q. Zamboni, Elena V. Pribavkina, Aldo de Luca
Přispěvatelé: Università degli studi di Napoli Federico II, Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Combinatoire, théorie des nombres (CTN), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), DE LUCA, Aldo, E., Pribavkina, L. Q., Zamboni
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: Journal of Combinatorial Theory, Series A
Journal of Combinatorial Theory, Series A, Elsevier, 2014, 125, pp.306-332
Journal of Combinatorial Theory. Series A
ISSN: 0097-3165
1096-0899
Popis: In this paper we consider the following question in the spirit of Ramsey theory: Given $x\in A^\omega,$ where $A$ is a finite non-empty set, does there exist a finite coloring of the non-empty factors of $x$ with the property that no factorization of $x$ is monochromatic? We prove that this question has a positive answer using two colors for almost all words relative to the standard Bernoulli measure on $A^\omega.$ We also show that it has a positive answer for various classes of uniformly recurrent words, including all aperiodic balanced words, and all words $x\in A^\omega$ satisfying $\lambda_x(n+1)-\lambda_x(n)=1$ for all $n$ sufficiently large, where $ \lambda_x(n)$ denotes the number of distinct factors of $x$ of length $n.$
Comment: arXiv admin note: incorporates 1301.5263
Databáze: OpenAIRE