On surface radiation conditions for an ellipse

Autor: Eli Turkel, Michael Medvinsky
Rok vydání: 2010
Předmět:
Zdroj: Journal of Computational and Applied Mathematics. 234(6):1647-1655
ISSN: 0377-0427
DOI: 10.1016/j.cam.2009.08.011
Popis: We compare several On Surface Radiation Boundary Conditions in two dimensions, for solving the Helmholtz equation exterior to an ellipse. We also introduce a new boundary condition for an ellipse based on a modal expansion in Mathieu functions. We compare the OSRC to a finite difference method.
Databáze: OpenAIRE