Minimal varieties of PI-superalgebras with graded involution
Autor: | Viviane Ribeiro Tomaz da Silva, Ernesto Spinelli, Onofrio Mario Di Vincenzo |
---|---|
Rok vydání: | 2021 |
Předmět: |
Pure mathematics
Mathematics::Commutative Algebra Rank (linear algebra) General Mathematics Mathematics::Rings and Algebras 010102 general mathematics Subalgebra Zero (complex analysis) Triangular matrix $ast$-graded polynomial identities Field (mathematics) 0102 computer and information sciences Graded algebras involutions exponent minimal varieties 01 natural sciences 010201 computation theory & mathematics Exponent Involution (philosophy) 0101 mathematics Variety (universal algebra) Mathematics |
Zdroj: | Israel Journal of Mathematics. 241:869-909 |
ISSN: | 1565-8511 0021-2172 |
DOI: | 10.1007/s11856-021-2119-z |
Popis: | In the present paper it is proved that a variety of associative PI-superalgebras with graded involution of finite basic rank over a field of characteristic zero is minimal of fixed *-graded exponent if, and only if, it is generated by a subalgebra of an upper block triangular matrix algebra equipped with a suitable elementary ℤ2-grading and graded involution. |
Databáze: | OpenAIRE |
Externí odkaz: |