An explicit split point procedure in model-based trees allowing for a quick fitting of GLM trees and GLM forests

Autor: Quentin Guibert, Christophe Dutang
Přispěvatelé: CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Statistics and Probability
Generalized linear model
Inference
Feature selection
02 engineering and technology
model-based recursive partitioning
01 natural sciences
[QFIN.CP]Quantitative Finance [q-fin]/Computational Finance [q-fin.CP]
Theoretical Computer Science
010104 statistics & probability
[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]
020204 information systems
0202 electrical engineering
electronic engineering
information engineering

Statistics::Methodology
0101 mathematics
[STAT.CO]Statistics [stat]/Computation [stat.CO]
Mathematics
[STAT.AP]Statistics [stat]/Applications [stat.AP]
Linear model
Ensemble learning
Tree (graph theory)
GLM trees
Random forest
Statistics::Computation
GLM forest
Computational Theory and Mathematics
Parametric model
Statistics
Probability and Uncertainty

GLM
Algorithm
random forest
Zdroj: Statistics and Computing
Statistics and Computing, Springer Verlag (Germany), 2021, 32 (1), ⟨10.1007/s11222-021-10059-x⟩
ISSN: 0960-3174
1573-1375
DOI: 10.1007/s11222-021-10059-x⟩
Popis: International audience; Classification and regression trees (CART) prove to be a true alternative to full parametric models such as linear models (LM) and generalized linear models (GLM). Although CART suffer from a biased variable selection issue, they are commonly applied to various topics and used for tree ensembles and random forests because of their simplicity and computation speed. Conditional inference trees and model-based trees algorithms for which variable selection is tackled via fluctuation tests are known to give more accurate and interpretable results than CART, but yield longer computation times. Using a closed-form maximum likelihood estimator for GLM, this paper proposes a split point procedure based on the explicit likelihood in order to save time when searching for the best split for a given splitting variable. A simulation study for non-Gaussian response is performed to assess the computational gain when building GLM trees. We also propose a benchmark on simulated and empirical datasets of GLM trees against CART, conditional inference trees and LM trees in order to identify situations where GLM trees are efficient. This approach is extended to multiway split trees and log-transformed distributions. Making GLM trees possible through a new split point procedure allows us to investigate the use of GLM in ensemble methods. We propose a numerical comparison of GLM forests against other random forest-type approaches. Our simulation analyses show cases where GLM forests are good challengers to random forests.
Databáze: OpenAIRE