Anti-obesity effect in high-fat-diet-induced obese C57BL/6 mice: Study of a novel extract from mulberry (Morus alba) leaves fermented with Cordyceps militaris
Autor: | Young-Whan Choi, Jun Young Choi, Jin Ju Park, Ji Eun Kim, Mi Rim Lee, Bo Ram Song, Hyunkeun Song, Dae Youn Hwang, Hye Ryeong Kim, Kyungmi Kim |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
0301 basic medicine
Cancer Research medicine.medical_specialty obesity 03 medical and health sciences chemistry.chemical_compound 0302 clinical medicine Immunology and Microbiology (miscellaneous) Lipid droplet Internal medicine Hyperlipidemia medicine Lipolysis fermentation lipogenesis Triglyceride Lipid metabolism mulberry leaves General Medicine Articles medicine.disease Cordyceps militaris 030104 developmental biology Endocrinology chemistry 030220 oncology & carcinogenesis Adipose triglyceride lipase Lipogenesis Perilipin lipolysis lipids (amino acids peptides and proteins) |
Zdroj: | Experimental and Therapeutic Medicine |
ISSN: | 1792-1015 1792-0981 |
Popis: | The therapeutic effects of mulberry (Morus alba) leaves on lipid metabolism, including lipogenesis, lipolysis and hyperlipidemia are widely known, although their fermented products are yet to be applied. To investigate the therapeutic effects of a novel extract of mulberry leaves fermented with Cordyceps militaris (EMfC) on lipid metabolism, the lipid profile of serum, lipid accumulation, lipolytic activity and lipogenesis regulation were measured in high fat diet (HFD)-induced obese C57BL/6 mice treated with EMfC for 12 weeks. Briefly, the concentrations of low-density lipoprotein, triglyceride, total cholesterol and glucose significantly decreased in the serum of the HFD+EMfC treated group when compared with the HFD+Vehicle treated group, while the levels of high-density lipoprotein increased in the HFD+EMfC group. The amount of abdominal fat and the size of adipocytes were significantly lower in the HFD+EMfC treated group when compared with the HFD+Vehicle treated group. The weight and number of lipid droplets of liver tissue exhibited a similar decrease. Furthermore, the mRNA levels of peroxisome proliferator-activated receptor-γ for adipogenesis as well as adipocyte protein 2 and Fas cell surface death receptor for lipogenesis reduced following EMfC treatment for 12 weeks. Phosphorylation of perilipin and hormone-sensitive lipase, and in the adipose triglyceride lipase expression showed a significant increase in the HFD+EMfC treated group. These results indicated that EMfC may prevent fat accumulation in the HFD-induced obese C57BL/6 mice through the inhibition of lipogenesis and by stimulating lipolysis. Thus, the results provide evidence for the potential use of EMfC as an anti-obesity complex in the treatment of obesity. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |