Picard modular groups generated by complex reflections

Autor: Mark, Alice, Paupert, Julien, Polletta, David
Rok vydání: 2023
Předmět:
Zdroj: Computational Aspects of Discrete Subgroups of Lie Groups. :127-133
ISSN: 1098-3627
0271-4132
DOI: 10.1090/conm/783/15735
Popis: In this short note we use the presentations found in \cite{MP} and \cite{Po} to show that the Picard modular groups ${\rm PU}(2,1,\mathcal{O}_d)$ with $d=1,3,7$ (respectively the quaternion hyperbolic lattice ${\rm PSp}(2,1,\mathcal{H})$ with entries in the Hurwitz integer ring $\mathcal{H}$) are generated by complex (resp. quaternionic) reflections, and that the Picard modular groups ${\rm PU}(2,1,\mathcal{O}_d)$ with $d=2,11$ have an index 4 subgroup generated by complex reflections.
Comment: 5 pages
Databáze: OpenAIRE