Efficient Discovery of Episode Rules With a Minimal Antecedent and a Distant Consequent
Autor: | Lina Fahed, Armelle Brun, Anne Boyer |
---|---|
Přispěvatelé: | Knowledge Information and Web Intelligence (KIWI), Department of Complex Systems, Artificial Intelligence & Robotics (LORIA - AIS), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria), Brun, Armelle |
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]
Relation (database) Antecedent (logic) Computer science Computation Process (computing) Filter (signal processing) computer.software_genre [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] Constraint (information theory) State (computer science) Data mining computer ComputingMilieux_MISCELLANEOUS Event (probability theory) |
Zdroj: | Knowledge Discovery, Knowledge Engineering and Knowledge Management Knowledge Discovery, Knowledge Engineering and Knowledge Management, 2015 Communications in Computer and Information Science ISBN: 9783319258393 IC3K (Selected Papers) |
Popis: | This paper focuses on event prediction in an event sequence, particularly on distant event prediction. We aim at mining episode rules with a consequent temporally distant from the antecedent and with a minimal antecedent. To reach this goal, we propose an algorithm that determines the consequent of an episode rule at an early stage in the mining process, and that applies a span constraint on the antecedent and a gap constraint between the antecedent and the consequent. This algorithm has a complexity lower than that of state of the art algorithms, as it is independent of the gap between the antecedent and the consequent. In addition, the determination of the consequent at an early stage allows to filter out many non relevant rules early in the process, which results in an additional significant decrease of the running time. A new confidence measure is proposed, the temporal confidence, which evaluates the confidence of a rule in relation to the predefined gap. The temporal confidence is used to mine rules with a consequent that occurs mainly at a given distance. The algorithm is evaluated on an event sequence of social networks messages. We show that our algorithm mines minimal rules with a distant consequent, while requiring a small computation time. We also show that these rules can be used to accurately predict distant events. |
Databáze: | OpenAIRE |
Externí odkaz: |