Efficient Discovery of Episode Rules With a Minimal Antecedent and a Distant Consequent

Autor: Lina Fahed, Armelle Brun, Anne Boyer
Přispěvatelé: Knowledge Information and Web Intelligence (KIWI), Department of Complex Systems, Artificial Intelligence & Robotics (LORIA - AIS), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria), Brun, Armelle
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Knowledge Discovery, Knowledge Engineering and Knowledge Management
Knowledge Discovery, Knowledge Engineering and Knowledge Management, 2015
Communications in Computer and Information Science ISBN: 9783319258393
IC3K (Selected Papers)
Popis: This paper focuses on event prediction in an event sequence, particularly on distant event prediction. We aim at mining episode rules with a consequent temporally distant from the antecedent and with a minimal antecedent. To reach this goal, we propose an algorithm that determines the consequent of an episode rule at an early stage in the mining process, and that applies a span constraint on the antecedent and a gap constraint between the antecedent and the consequent. This algorithm has a complexity lower than that of state of the art algorithms, as it is independent of the gap between the antecedent and the consequent. In addition, the determination of the consequent at an early stage allows to filter out many non relevant rules early in the process, which results in an additional significant decrease of the running time. A new confidence measure is proposed, the temporal confidence, which evaluates the confidence of a rule in relation to the predefined gap. The temporal confidence is used to mine rules with a consequent that occurs mainly at a given distance. The algorithm is evaluated on an event sequence of social networks messages. We show that our algorithm mines minimal rules with a distant consequent, while requiring a small computation time. We also show that these rules can be used to accurately predict distant events.
Databáze: OpenAIRE