Homeomorphic subsurfaces and the omnipresent arcs
Autor: | Federica Fanoni, Tyrone Ghaswala, Alan McLeay |
---|---|
Přispěvatelé: | Centre National de la Recherche Scientifique (CNRS), Laboratoire Analyse et Mathématiques Appliquées (LAMA), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel, Fanoni, Federica |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
010102 general mathematics
Geometric Topology (math.GT) Ocean Engineering [MATH] Mathematics [math] Group Theory (math.GR) 01 natural sciences 57K20 20F65 Mathematics - Geometric Topology 0103 physical sciences FOS: Mathematics 010307 mathematical physics 0101 mathematics [MATH]Mathematics [math] Mathematics - Group Theory |
Zdroj: | Annales Henri Lebesgue Annales Henri Lebesgue, UFR de Mathématiques-IRMAR, In press |
ISSN: | 2644-9463 |
Popis: | In this article, we are concerned with various aspects of arcs on surfaces. In the first part, we deal with topological aspects of arcs and their complements. We use this understanding, in the second part, to construct interesting actions of the mapping class group on a subgraph of the arc graph. This subgraph naturally emerges from a new characterisation of infinite-type surfaces in terms of homeomorphic subsurfaces. To correct an error in the previous version, Sections 6 and 7 have been combined and rewritten into what is now Section 6. Other minor changes have also been made. To appear in Annales Henri Lebesgue |
Databáze: | OpenAIRE |
Externí odkaz: |