Homeomorphic subsurfaces and the omnipresent arcs

Autor: Federica Fanoni, Tyrone Ghaswala, Alan McLeay
Přispěvatelé: Centre National de la Recherche Scientifique (CNRS), Laboratoire Analyse et Mathématiques Appliquées (LAMA), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel, Fanoni, Federica
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Annales Henri Lebesgue
Annales Henri Lebesgue, UFR de Mathématiques-IRMAR, In press
ISSN: 2644-9463
Popis: In this article, we are concerned with various aspects of arcs on surfaces. In the first part, we deal with topological aspects of arcs and their complements. We use this understanding, in the second part, to construct interesting actions of the mapping class group on a subgraph of the arc graph. This subgraph naturally emerges from a new characterisation of infinite-type surfaces in terms of homeomorphic subsurfaces.
To correct an error in the previous version, Sections 6 and 7 have been combined and rewritten into what is now Section 6. Other minor changes have also been made. To appear in Annales Henri Lebesgue
Databáze: OpenAIRE