A COVID-19 Decision Support System for Phone Call Triage, Designed by and for Medical Students

Autor: Rosy Tsopra, Anita Burgun, Adrien Boukobza, Jean-Patrick Vrel, Samy Oulmane
Přispěvatelé: Hôpital Européen Georges Pompidou [APHP] (HEGP), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO), Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPCité), Health data- and model- driven Knowledge Acquisition (HeKA), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPCité)-École pratique des hautes études (EPHE), TSOPRA, Rosy, École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPCité)-École Pratique des Hautes Études (EPHE)
Rok vydání: 2021
Předmět:
Zdroj: MIE
Public Health and Informatics
Public Health and Informatics, 281, IOS Press, pp.525-529, 2021, Studies in Health Technology and Informatics, 978-1-64368-185-6. ⟨10.3233/SHTI210226⟩
DOI: 10.3233/shti210226
Popis: International audience; During spring 2020, SARS-CoV-2 pandemic induced shortage of medical equipment, hospital capacity and staff. To tackle this issue, medical students have been strongly involved in early patient triage through medical phone call regulation. Here, we present an intelligent web-based decision support system for COVID-19 phone call regulation, developed by and for, medical students to help them during this difficult but crucial task. The system is divided into 5 tabs. The first tab displays administrative information, clinical data related to life-threatening emergency, and personalized recommendations for patient management. The second tab displays a PDF report summarizing the clinical situation; the third tab displays the guidelines used for establishing the recommendations, and the fourth tab displays the overall algorithm in the form of a decision tree. The fifth tab provided a short user guide. The system was assessed by 21 medical staff. More than 90% of them appreciated the navigation and the interface, and found the content relevant. 90,5% of them would like to use it during the medical regulation. In the future, we plan to use this system during simulation-based medical learning for the initial medical training of medical students.
Databáze: OpenAIRE