Laser-Doppler spectrum decomposition applied for the estimation of speed distribution of particles moving in a multiple scattering medium

Autor: Roman Maniewski, Stanislaw Wojtkiewicz, Adam Liebert, Hervé Rix, Norbert Zolek
Přispěvatelé: Institute of Biocybernetics and Biomedical Engineering (IBIB), Polska Akademia Nauk = Polish Academy of Sciences (PAN), Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe SIGNAL, Signal, Images et Systèmes (Laboratoire I3S - SIS), Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Rok vydání: 2009
Předmět:
Photon
Monte Carlo method
Models
Biological

01 natural sciences
Noise (electronics)
Flow measurement
030218 nuclear medicine & medical imaging
Diffusion
010309 optics
Motion
03 medical and health sciences
symbols.namesake
Biopolymers
0302 clinical medicine
Optics
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing
Nephelometry and Turbidimetry
0103 physical sciences
Laser-Doppler Flowmetry
Animals
Humans
Scattering
Radiation

Computer Simulation
Radiology
Nuclear Medicine and imaging

Particle Size
Diffusion (business)
Physics
[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]
Radiological and Ultrasound Technology
Scattering
business.industry
Models
Chemical

symbols
Decomposition method (constraint satisfaction)
business
[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
Doppler effect
Zdroj: Physics in Medicine and Biology
Physics in Medicine and Biology, IOP Publishing, 2009, 54, pp.Phys. Med. Biol. 54 (2009) 679-697. ⟨10.1088/0031-9155/54/3/014⟩
ISSN: 1361-6560
0031-9155
Popis: Recently, a method for the estimation of speed distribution of particles moving in an optically turbid medium has been proposed. The method allows potentially absolute measurement of speed of the particles and can be applied in laser-Doppler perfusion measurements. However, the decomposition technique was limited to short source-detector separations for which the assumption that one photon is Doppler scattered not more than once is fulfilled. In the present paper we show a generalized decomposition technique in which photons can be scattered more than once. We show the theoretical background for decomposition in such a case. We apply a decomposition method for the analysis of laser-Doppler spectra obtained by Monte Carlo simulations. This analysis allows showing noise limits in which the technique can be effectively applied in analysis of measured spectra. We propose an approximated scattering model based on the assumption that for one photon consecutive Doppler scattering events occur on particles moving with the same speed, and we show that this approximation does not influence significantly the uncertainty of the resulting speed distribution. The proposed decomposition procedure is validated in measurements on a physical flow model. The decomposition procedure is also validated by analysis of spectra measured on a physical phantom using laser-Doppler flow meter (Oxford Optronix, UK). A diluted solution of milk was pumped through a tube fixed in an optically turbid material with speed varying from 0 mm s(-1) to 4 mm s(-1). We observed a linear relation between actual speed of milk solution and speed estimated from results of spectra decomposition.
Databáze: OpenAIRE