Energy Demand Forecasting Using Deep Learning: Applications for the French Grid
Autor: | Jaime Durán, Alejandro J. del Real, Fernando Dorado |
---|---|
Přispěvatelé: | Universidad de Sevilla. Departamento de Ingeniería de Sistemas y Automática |
Rok vydání: | 2020 |
Předmět: |
Service (systems architecture)
Control and Optimization Computer science 020209 energy Computer Science::Neural and Evolutionary Computation Feature extraction Energy Engineering and Power Technology 02 engineering and technology Machine learning computer.software_genre lcsh:Technology Convolutional neural network convolutional neural networks 0202 electrical engineering electronic engineering information engineering Autoregressive integrated moving average Electrical and Electronic Engineering Engineering (miscellaneous) Structure (mathematical logic) energy demand forecasting Artificial neural networks Artificial neural network lcsh:T Renewable Energy Sustainability and the Environment business.industry Deep learning 020208 electrical & electronic engineering deep learning Grid machine learning artificial neural networks Energy demand forecasting Convolutional neural networks Artificial intelligence business computer Energy (miscellaneous) |
Zdroj: | idUS. Depósito de Investigación de la Universidad de Sevilla instname Energies; Volume 13; Issue 9; Pages: 2242 idUS: Depósito de Investigación de la Universidad de Sevilla Universidad de Sevilla (US) Energies, Vol 13, Iss 2242, p 2242 (2020) |
ISSN: | 1996-1073 |
DOI: | 10.3390/en13092242 |
Popis: | This paper investigates the use of deep learning techniques in order to perform energy demand forecasting. To this end, the authors propose a mixed architecture consisting of a convolutional neural network (CNN) coupled with an artificial neural network (ANN), with the main objective of taking advantage of the virtues of both structures: the regression capabilities of the artificial neural network and the feature extraction capacities of the convolutional neural network. The proposed structure was trained and then used in a real setting to provide a French energy demand forecast using Action de Recherche Petite Echelle Grande Echelle (ARPEGE) forecasting weather data. The results show that this approach outperforms the reference Réseau de Transport d’Electricité (RTE, French transmission system operator) subscription-based service. Additionally, the proposed solution obtains the highest performance score when compared with other alternatives, including Autoregressive Integrated Moving Average (ARIMA) and traditional ANN models. This opens up the possibility of achieving high-accuracy forecasting using widely accessible deep learning techniques through open-source machine learning platforms. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |