Strong local optimality for generalized L1 optimal control problems

Autor: Francesca Chittaro, Laura Poggiolini
Přispěvatelé: Laboratoire d'Informatique et Systèmes (LIS), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Université de Toulon (UTLN), Contrôle et Diagnostic pour l’Environnement (CDE), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Matematica Applicata [Firenze] (DMA), Università degli Studi di Firenze = University of Florence (UniFI), Laboratoire des Sciences de l'Information et des Systèmes ( LSIS ), Aix Marseille Université ( AMU ) -Université de Toulon ( UTLN ) -Arts et Métiers Paristech ENSAM Aix-en-Provence-Centre National de la Recherche Scientifique ( CNRS ), Dipartimento di Matematica Applicata [Firenze] ( DMA ), Università degli Studi di Firenze [Firenze], Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]
sufficient conditions
Control and Optimization
Optimal Control
Concatenation
0211 other engineering and technologies
Sparse control
010103 numerical & computational mathematics
02 engineering and technology
Absolute value (algebra)
Management Science and Operations Research
01 natural sciences
Optimal Control
sufficient conditions
Hamiltonian methods
sparse control

Pontryagin's minimum principle
FOS: Mathematics
Applied mathematics
0101 mathematics
Control (linguistics)
Mathematics - Optimization and Control
Mathematics
Mathematics Subject Classification (2000) 49K15 49K30
021103 operations research
Applied Mathematics
Zero (complex analysis)
Optimal control
sparse control
Hamiltonian methods
Optimization and Control (math.OC)
Theory of computation
[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
Zdroj: Journal of Optimization Theory and Applications
Journal of Optimization Theory and Applications, 2019, 180 (1), pp.207-234
Journal of Optimization Theory and Applications, Springer Verlag, 2019, 180 (1), pp.207-234
ISSN: 0022-3239
1573-2878
Popis: In this paper, we analyse control affine optimal control problems with a cost functional involving the absolute value of the control. The Pontryagin extremals associated with such systems are given by (possible) concatenations of bang arcs with singular arcs and with inactivated arcs, that is, arcs where the control is identically zero. Here we consider Pontryagin extremals given by a bang-inactive-bang concatenation. We establish sufficient optimality conditions for such extremals, in terms of some regularity conditions and of the coercivity of a suitable finite-dimensional second variation.
Journal of Optimization Theory and Applications, Springer Verlag, In press
Databáze: OpenAIRE