Strong local optimality for generalized L1 optimal control problems
Autor: | Francesca Chittaro, Laura Poggiolini |
---|---|
Přispěvatelé: | Laboratoire d'Informatique et Systèmes (LIS), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Université de Toulon (UTLN), Contrôle et Diagnostic pour l’Environnement (CDE), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Matematica Applicata [Firenze] (DMA), Università degli Studi di Firenze = University of Florence (UniFI), Laboratoire des Sciences de l'Information et des Systèmes ( LSIS ), Aix Marseille Université ( AMU ) -Université de Toulon ( UTLN ) -Arts et Métiers Paristech ENSAM Aix-en-Provence-Centre National de la Recherche Scientifique ( CNRS ), Dipartimento di Matematica Applicata [Firenze] ( DMA ), Università degli Studi di Firenze [Firenze], Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]
sufficient conditions Control and Optimization Optimal Control Concatenation 0211 other engineering and technologies Sparse control 010103 numerical & computational mathematics 02 engineering and technology Absolute value (algebra) Management Science and Operations Research 01 natural sciences Optimal Control sufficient conditions Hamiltonian methods sparse control Pontryagin's minimum principle FOS: Mathematics Applied mathematics 0101 mathematics Control (linguistics) Mathematics - Optimization and Control Mathematics Mathematics Subject Classification (2000) 49K15 49K30 021103 operations research Applied Mathematics Zero (complex analysis) Optimal control sparse control Hamiltonian methods Optimization and Control (math.OC) Theory of computation [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] |
Zdroj: | Journal of Optimization Theory and Applications Journal of Optimization Theory and Applications, 2019, 180 (1), pp.207-234 Journal of Optimization Theory and Applications, Springer Verlag, 2019, 180 (1), pp.207-234 |
ISSN: | 0022-3239 1573-2878 |
Popis: | In this paper, we analyse control affine optimal control problems with a cost functional involving the absolute value of the control. The Pontryagin extremals associated with such systems are given by (possible) concatenations of bang arcs with singular arcs and with inactivated arcs, that is, arcs where the control is identically zero. Here we consider Pontryagin extremals given by a bang-inactive-bang concatenation. We establish sufficient optimality conditions for such extremals, in terms of some regularity conditions and of the coercivity of a suitable finite-dimensional second variation. Journal of Optimization Theory and Applications, Springer Verlag, In press |
Databáze: | OpenAIRE |
Externí odkaz: |