FROM LOCAL CLASS FIELD TO THE CURVE AND VICE VERSA
Autor: | Laurent Fargues |
---|---|
Přispěvatelé: | Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC), ANR-14-CE25,PerCoLaTor,PERfectoides COrresondance de LAnglands et TORsion dans la cohomologie(2014), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), ANR-14-CE25-0002,PerCoLaTor,PERfectoïdes, cohomologie COmplétée, correspondance de LAnglands et cohomologie de TORsion(2014), Fargues, Laurent, Appel à projets générique - PERfectoïdes, cohomologie COmplétée, correspondance de LAnglands et cohomologie de TORsion - - PerCoLaTor2014 - ANR-14-CE25-0002 - Appel à projets générique - VALID |
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
Pure mathematics
Class (set theory) Hodge theory Local class field theory Mathematics::Number Theory 010102 general mathematics [MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG] Field (mathematics) Topology 01 natural sciences [MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] 010101 applied mathematics [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] 0101 mathematics Link (knot theory) Versa [MATH.MATH-NT] Mathematics [math]/Number Theory [math.NT] Mathematics |
Zdroj: | AMS Summer Institute in Algebraic Geometry AMS Summer Institute in Algebraic Geometry, Jul 2015, Salt Lake City, United States |
Popis: | International audience; We begin by reviewing our joint work with J.-M. Fontaine about the fundamental curve of p-adic Hodge theory. We then explain our results obtained in [4] about the classification of G-bundles on this curve and its link with local class field theory. We finish by formulating conjectures that would extend those results. |
Databáze: | OpenAIRE |
Externí odkaz: |