Determination of the optimal packing configuration of a catalytic fixed-bed reactor using geometry and multi-objective optimization methods

Autor: Yannick Privat, Alexis Courtais, Abderrazak M. Latifi, François Lesage
Přispěvatelé: Laboratoire Réactions et Génie des Procédés (LRGP), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Ecole Nationale Supérieure des Industries Chimiques (ENSIC), Université de Lorraine (UL), Institut de Recherche Mathématique Avancée (IRMA), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), TOkamaks and NUmerical Simulations (TONUS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Inria Nancy - Grand Est
Rok vydání: 2021
Předmět:
Zdroj: PC 2021-23rd International Conference on Process Control
PC 2021-23rd International Conference on Process Control, Jun 2021, Strbske Pleso, Slovakia. pp.102-107, ⟨10.1109/PC52310.2021.9447503⟩
2021 23rd International Conference on Process Control (PC)
2021 23rd International Conference on Process Control (PC), Jun 2021, Strbske Pleso, France. pp.102-107, ⟨10.1109/PC52310.2021.9447503⟩
DOI: 10.1109/pc52310.2021.9447503
Popis: This paper deals with the development of a geometry optimization approach to determine the optimal shape of a fixed-bed reactor where a catalytic surface reaction takes place. The investigated problem is formulated as a multi-objective optimization problem considering two antagonistic objectives: the energy dissipation in the fluid and the average concentration of reactant at the reactor outlet. The optimal solutions are subject to four constraints: (i) the process model consisting of the NavierStokes, the continuity and the convection-diffusion equations, (ii) an iso-volume constraint and (iii) two thickness constraints which allow us to take into account the manufacturability of the optimal reactors. The solution of the optimization problem is computed using the adjoint system method and the linear scalarization method which tranforms the multi-objective problem into a single-objective problem. The solution of the problem is a whole set of solutions (i.e. Pareto front) and the best optimal solution is chosen using the multi-attribute utility theory (MAUT). The best optimal shape of the reactor leads to a significant improvement of the conversion rate of 12.6% with respect to the initial shape and to an increase in energy dissipation 3.5 times higher.
Databáze: OpenAIRE