Development of the radio astronomical method of cosmic particle detection for extremely high-energy cosmic ray physics and neutrino astronomy
Autor: | I. M. Zheleznykh, Rustam D. Dagkesamanskii, Grigorii Dedenko, L. G. Dedenko |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Physics
Frequency band Astrophysics::High Energy Astrophysical Phenomena QC1-999 Detector Astrophysics::Instrumentation and Methods for Astrophysics Astronomy Cosmic ray Astrophysics Astrophysics::Cosmology and Extragalactic Astrophysics 01 natural sciences Radio telescope Observatory 0103 physical sciences Astrophysics::Earth and Planetary Astrophysics Neutrino astronomy 010306 general physics 010303 astronomy & astrophysics Radio astronomy Radio wave |
Zdroj: | EPJ Web of Conferences, Vol 145, p 11002 (2017) |
Popis: | The proposal to use ground based radio telescopes for detection of Askaryan radio pulses from particle cascades arising when extremely high-energy (EHE > 1020 eV) cosmic rays (including neutrinos) interact with the lunar regolith of multi gigaton mass was made at the end of 1980s in the framework of the Russian (Soviet) DUMAND Program. During more than a quarter of century a number of lunar experiments were carried out mainly in the 1–3 GHz frequency range using the large radio telescopes of Australia, USA, Russia and other countries but these experiments only put upper limits to the EHE cosmic rays fluxes. For this reason, it would be of great interest to search for nanosecond radio pulses from the Moon in a wider interval of frequencies (including lower ones of 100–350 MHz) with larger radio detectors – for example the giant radio telescope SKA (Square Kilometer Array) which is constructed in Australia, New Zealand and South Africa. In this paper possibilities are discussed to use one of the most sensitive meter-wavelength (∼ 110 MHz) Large Phased Array (LPA) of 187 × 384 m2 and the wide field of view meter-wavelength array of the Pushchino Radio Astronomy Observatory as prototypes of low frequency radio detectors for lunar experiments. The new scheme for fast simulation of ultrahigh and extremely high-energy cascades in dense media is also suggested. This scheme will be used later for calculations of radio emission of cascades in the lunar regolith with energies up to 1020 eV and higher in the wide frequency band of 0.1− a few GHz. |
Databáze: | OpenAIRE |
Externí odkaz: |