In situ prevascularization designed by laser-assisted bioprinting: effect on bone regeneration
Autor: | Nathalie Dusserre, Davit Hakobyan, Noélie B. Thebaud, Jean-Christophe Fricain, Samantha Delmond, Olivia Kérourédan, Sophia Ziane, Murielle Rémy, Raphaël Devillard |
---|---|
Přispěvatelé: | Bioingénierie tissulaire (BIOTIS), Université de Bordeaux (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), Pôle d’Odontologie et de Santé Buccale [CHU Bordeaux], CHU Bordeaux [Bordeaux], ART BioPrint, Université de Bordeaux (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Bordeaux (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), CIC Bordeaux, Université Bordeaux Segalen - Bordeaux 2-Institut National de la Santé et de la Recherche Médicale (INSERM), Chassande, Olivier |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
X-ray microtomography
Bone Regeneration [SDV]Life Sciences [q-bio] 0206 medical engineering Biomedical Engineering Neovascularization Physiologic Bioengineering Calvaria Context (language use) Cell Count 02 engineering and technology Biochemistry Fluorescence Biomaterials chemistry.chemical_compound Mice medicine Human Umbilical Vein Endothelial Cells Animals Humans Bone regeneration Regeneration (biology) Lasers Mesenchymal stem cell Skull Bioprinting General Medicine X-Ray Microtomography 021001 nanoscience & nanotechnology 020601 biomedical engineering Vascular endothelial growth factor [SDV] Life Sciences [q-bio] medicine.anatomical_structure chemistry Female 0210 nano-technology Biotechnology Biomedical engineering Biofabrication |
Zdroj: | Biofabrication Biofabrication, IOP Publishing, 2019, 11 (4), pp.045002. ⟨10.1088/1758-5090/ab2620⟩ |
ISSN: | 1758-5082 1758-5090 |
DOI: | 10.1088/1758-5090/ab2620⟩ |
Popis: | International audience; Vascularization plays a crucial role in bone formation and regeneration process. Development of a functional vasculature to improve survival and integration of tissue-engineered bone substitutes remains a major challenge. Biofabrication technologies, such as bioprinting, have been introduced as promising alternatives to overcome issues related to lack of prevascularization and poor organization of vascular networks within the bone substitutes. In this context, this study aimed at organizing endothelial cells in situ, in a mouse calvaria bone defect, to generate a prevascularization with a defined architecture, and promote in vivo bone regeneration. Laser-assisted bioprinting (LAB) was used to pattern Red Fluorescent Protein-labeled endothelial cells into a mouse calvaria bone defect of critical size, filled with collagen containing mesenchymal stem cells and vascular endothelial growth factor. LAB technology allowed safe and controlled in vivo printing of different cell patterns. In situ printing of endothelial cells gave rise to organized microvascular networks into bone defects. At two months, vascularization rate (vr) and bone regeneration rate (br) showed statistically significant differences between the 'random seeding' condition and both 'disc' pattern (vr = +203.6%; br = +294.1%) and 'crossed circle' pattern (vr = +355%; br = +602.1%). These results indicate that in vivo LAB is a valuable tool to introduce in situ prevascularization with a defined configuration and promote bone regeneration. |
Databáze: | OpenAIRE |
Externí odkaz: |