TailX: Scheduling Heterogeneous Multiget Queries to Improve Tail Latencies in Key-Value Stores

Autor: Jaiman, Vikas, Mokhtar, Sonia Ben, Rivière, Etienne, Remke, A., Schiavoni, V.
Přispěvatelé: Laboratoire d'Informatique de Grenoble (LIG), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Distribution, Recherche d'Information et Mobilité (DRIM), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Université Lumière - Lyon 2 (UL2), Université Catholique de Louvain = Catholic University of Louvain (UCL), Institute of Data Science, RS: FSE DACS IDS, UCL - SST/ICTM/INGI - Pôle en ingénierie informatique
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: 20th International Conference on Distributed Applications and Interoperable Systems
20th International Conference on Distributed Applications and Interoperable Systems, Jun 2020, Valletta, Malta. pp.73-92, ⟨10.1007/978-3-030-50323-9_5⟩
Distributed Applications and Interoperable Systems
Distributed Applications and Interoperable Systems ISBN: 9783030503222
DAIS
Distributed Applications and Interoperable Systems. DAIS 2020, 73-92
STARTPAGE=73;ENDPAGE=92;TITLE=Distributed Applications and Interoperable Systems. DAIS 2020
DOI: 10.1007/978-3-030-50323-9_5⟩
Popis: International audience; Users of interactive services such as e-commerce platforms have high expectations for the performance and responsiveness of these services. Tail latency, denoting the worst service times, contributes greatly to user dissatisfaction and should be minimized. Maintaining low tail latency for interactive services is challenging because a request is not complete until all its operations are completed. The challenge is to identify bottleneck operations and schedule them on uncoordinated backend servers with minimal overhead, when the duration of these operations are heterogeneous and unpredictable. In this paper, we focus on improving the latency of multiget operations in cloud data stores. We present TailX, a task-aware multiget scheduling algorithm that improves tail latencies under heterogeneous workloads. TailX schedules operations according to an estimation of the size of the corresponding data, and allows itself to procrastinate some operations to give way to higher priority ones. We implement TailX in Cassandra, a widely used key-value store. The result is an improved overall performance of the cloud data stores for a wide variety of heterogeneous workloads. Specifically, our experiments under heterogeneous YCSB workloads show that TailX outperforms state-of-the-art solutions and reduces tail latencies by up to 70% and median latencies by up to 75%.
Databáze: OpenAIRE