Methods to identify and characterize developmental neurotoxicity for human health risk assessment. I: behavioral effects
Autor: | Joseph Ross, Kevin M. Crofton, Deborah A. Cory-Slechta, Jeffery A. Foran, Bernard Weiss, Larry Sheets, B. E. Mileson |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2001 |
Předmět: |
Nervous system
Health Toxicology and Mutagenesis Sensory system Motor Activity Nervous System Risk Assessment Toxicology Mice chemistry.chemical_compound Cognition Animals Laboratory Toxicity Tests medicine Animals Humans Neurochemistry Social Behavior Behavior Animal Brain morphometry Public Health Environmental and Occupational Health Rats medicine.anatomical_structure chemistry Psychology Neuroscience Thermoregulatory functions Social behavior Toxicant Research Article |
Zdroj: | Environmental Health Perspectives |
ISSN: | 0091-6765 |
Popis: | Alterations in nervous system function after exposure to a developmental neurotoxicant may be identified and characterized using neurobehavioral methods. A number of methods can evaluate alterations in sensory, motor, and cognitive functions in laboratory animals exposed to toxicants during nervous system development. Fundamental issues underlying proper use and interpretation of these methods include a) consideration of the scientific goal in experimental design, b) selection of an appropriate animal model, c) expertise of the investigator, d) adequate statistical analysis, and e) proper data interpretation. Strengths and weaknesses of the assessment methods include sensitivity, selectivity, practicality, and variability. Research could improve current behavioral methods by providing a better understanding of the relationship between alterations in motor function and changes in the underlying structure of these systems. Research is also needed to develop simple and sensitive assays for use in screening assessments of sensory and cognitive function. Assessment methods are being developed to examine other nervous system functions, including social behavior, autonomic processes, and biologic rhythms. Social behaviors are modified by many classes of developmental neurotoxicants and hormonally active compounds that may act either through neuroendocrine mechanisms or by directly influencing brain morphology or neurochemistry. Autonomic and thermoregulatory functions have been the province of physiologists and neurobiologists rather than toxicologists, but this may change as developmental neurotoxicology progresses and toxicologists apply techniques developed by other disciplines to examine changes in function after toxicant exposure. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |