Charge transport mechanisms in inkjet-printed thin-film transistors based on two-dimensional materials

Autor: Erik Piatti, Adrees Arbab, Francesco Galanti, Tian Carey, Luca Anzi, Dahnan Spurling, Ahin Roy, Ainur Zhussupbekova, Kishan A. Patel, Jong M. Kim, Dario Daghero, Roman Sordan, Valeria Nicolosi, Renato S. Gonnelli, Felice Torrisi
Přispěvatelé: Engineering & Physical Science Research Council (E, Engineering & Physical Science Research Council (EPSRC)
Rok vydání: 2021
Předmět:
Zdroj: Nature Electronics. 4:893-905
ISSN: 2520-1131
DOI: 10.1038/s41928-021-00684-9
Popis: Printed electronics using inks based on graphene and other two-dimensional materials can be used to create large-scale, flexible, and wearable devices. However, the complexity of the ink formulations, and the polycrystalline nature of the resulting thin films, have made it difficult to examine charge transport in such devices. Here we report the charge transport mechanisms of surfactant- and solvent-free inkjet-printed thin-film devices based on few-layer graphene (semi-metal), molybdenum disulfide (MoS2, semiconductor) and titanium carbide MXene (Ti3C2, metal) by investigating the temperature, gate and magnetic field dependencies of their electrical conductivity. We find that charge transport in printed few-layer MXene and MoS2 devices is dominated by the intrinsic transport mechanism of the constituent flakes: MXene exhibits a weakly-localized 2D metallic behaviour at any temperature, whereas MoS2 behaves as an insulator with a crossover from 3D-Mott variable-range hopping to nearest-neighbour hopping around 200 K. Charge transport in printed few-layer graphene devices is dominated by the transport mechanism between different flakes, which exhibit 3D-Mott variable range hopping conduction at any temperature.
Databáze: OpenAIRE