Non-archimedean Eberlein-mulian theory
Autor: | W.H. Schikhof, T. Kiyosawa |
---|---|
Rok vydání: | 1996 |
Předmět: | |
Zdroj: | International Journal of Mathematics and Mathematical Sciences, Vol 19, Iss 4, Pp 637-642 (1996) |
ISSN: | 1687-0425 0161-1712 |
DOI: | 10.1155/s0161171296000907 |
Popis: | It is shown that, for a large class of non-archimedean normed spacesE, a subsetXis weakly compact as soon asf(X)is compact for allf∈E′(Theorem 2.1), a fact that has no analogue in Functional Analysis over the real or complex numbers. As a Corollary we derive a non-archimedean version of the Eberlein-mulian Theorem (2.2 and 2.3, for the classical theorem, see [1], VIII, §2 Theorem and Corollary, page 219). |
Databáze: | OpenAIRE |
Externí odkaz: |