Non-archimedean Eberlein-Šmulian theory

Autor: W.H. Schikhof, T. Kiyosawa
Rok vydání: 1996
Předmět:
Zdroj: International Journal of Mathematics and Mathematical Sciences, Vol 19, Iss 4, Pp 637-642 (1996)
ISSN: 1687-0425
0161-1712
DOI: 10.1155/s0161171296000907
Popis: It is shown that, for a large class of non-archimedean normed spacesE, a subsetXis weakly compact as soon asf(X)is compact for allf∈E′(Theorem 2.1), a fact that has no analogue in Functional Analysis over the real or complex numbers. As a Corollary we derive a non-archimedean version of the Eberlein-Šmulian Theorem (2.2 and 2.3, for the ‘classical’ theorem, see [1], VIII, §2 Theorem and Corollary, page 219).
Databáze: OpenAIRE