A simple spatial extension to the extended connectivity interaction features for binding affinity prediction

Autor: Orhobor, Oghenejokpeme I, Rehim, Abbi Abdel, Lou, Hang, Ni, Hao, King, Ross D
Přispěvatelé: Orhobor, Oghenejokpeme I. [0000-0003-1178-611X], King, Ross D. [0000-0001-7208-4387], Apollo - University of Cambridge Repository, Orhobor, Oghenejokpeme I [0000-0003-1178-611X], King, Ross D [0000-0001-7208-4387], King, Ross [0000-0001-7208-4387]
Rok vydání: 2022
Předmět:
DOI: 10.17863/cam.84264
Popis: Peer reviewed: True
The representation of the protein-ligand complexes used in building machine learning models play an important role in the accuracy of binding affinity prediction. The Extended Connectivity Interaction Features (ECIF) is one such representation. We report that (i) including the discretized distances between protein-ligand atom pairs in the ECIF scheme improves predictive accuracy, and (ii) in an evaluation using gradient boosted trees, we found that the resampling method used in selecting the best hyperparameters has a strong effect on predictive performance, especially for benchmarking purposes.
Databáze: OpenAIRE