Popis: |
Lithium-rich layered oxides is one of the most perspective candidates for cathode materials of lithium ion battery, because of its high discharge capacity. However, there are some disadvantages of uneven composition, voltage decay, and poor rate capacity, which are closely related to the preparation method. Here, 0.5Li2MnO3·0.5LiMn0.8Ni0.1Co0.1O2 were successfully prepared by sol-gel and oxalate co-precipitation methods. A systematic analysis of the materials shows that the 0.5Li2MnO3·0.5LiMn0.8Ni0.1Co0.1O2 prepared by the oxalic acid co-precipitation method has the most stable layered structure and the best electrochemical performance. The initial discharge specific capacity is 261.6 mAh·g-1 at 0.05 C, and the discharge specific capacity is 138 mAh·g-1 at 5 C. The voltage decay is only 210 mV, and the capacity retention is 94.2% after 100 cycles at 1 C. The suppression of voltage decay can be attributed to the high nickel content and uniform element distribution. In addition, tightly packed porous spheres help to reduce lithium ion diffusion energy and improve the stability of the layered structure, thereby improving cycle stability and rate capacity. This conclusion provides a reference for designing high energy density lithium-ion batteries. |