Numerical shape optimization in Fluid Mechanics at low Reynolds number
Autor: | Abderrazak M. Latifi, Pascal Frey, Alexis Courtais, Yannick Privat, François Lesage |
---|---|
Přispěvatelé: | Laboratoire Réactions et Génie des Procédés (LRGP), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche Mathématique Avancée (IRMA), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), TOkamaks and NUmerical Simulations (TONUS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut des Sciences du Calcul et des Données (ISCD), Sorbonne Université (SU), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Inria Nancy - Grand Est, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Finite volume method
Turbulence business.industry 010102 general mathematics Reynolds number Laminar flow Fluid mechanics 02 engineering and technology Mechanics Computational fluid dynamics 01 natural sciences Physics::Fluid Dynamics symbols.namesake 020401 chemical engineering Fluid dynamics symbols [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] [SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering Shape optimization [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] 0204 chemical engineering 0101 mathematics business ComputingMilieux_MISCELLANEOUS Mathematics |
Zdroj: | Process Control'2019-22nd International Conference on Process Control Process Control'2019-22nd International Conference on Process Control, Jun 2019, Strbske Pleso, Slovakia. pp.280-285, ⟨10.1109/PC.2019.8815038⟩ 22nd International Conference on Process Control (PC19) 22nd International Conference on Process Control (PC19), Jun 2019, Strbske Pleso, Slovakia. pp.280-285, ⟨10.1109/PC.2019.8815038⟩ |
DOI: | 10.1109/PC.2019.8815038⟩ |
Popis: | International audience; In this paper, a simple and robust numerical shape optimization approach is presented. This approach is based on the Hadamard geometric optimization method and tested on 3 two-dimensional case studies representing standard flows in fluid dynamics, namely the flow around an obstacle, in a 90° elbow pipe and in a dyadic tree. This viscous flows are driven by the stationary Navier-Stokes equations without turbulence model. Low velocities are imposed at the inlet of each case study in order to operate in laminar flow regime. The objective is to determine the shape of the 3 aforementioned case studies that minimizes the energy dissipation in the fluid due to the work of viscous forces under a volume constraint. The required gradients of the performance index and constraint with respect to the shape are computed by means of the adjoint system method. The Navier-Stokes equations and the adjoint system are implemented and solved by using the finite volume method within OpenFOAM CFD software. The solver "adjointShapeOptimizationFoam" is modified in order to implement the optimization algorithm and determine the best shape in each of the three considered case studies. The optimal shapes obtained in the three case studies are in very good agreement with the available literature works. Moreover, they allow a significant reduction of the dissipated energy ranging from 10.8 to 53.3 %. Therefore, a decrease of the pressure losses in each case is also achieved in the same proportion. |
Databáze: | OpenAIRE |
Externí odkaz: |