Otolith shape classification for fish stock discrimination

Autor: Jose Antonio Soria, Abdesslam Benzinou, Kamal Nasreddine, Vicenç Parisi-Baradad, Lluis Ferrer-Arnau
Přispěvatelé: Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica, Universitat Politècnica de Catalunya. Centre de Desenvolupament Tecnològic de Sistemes d'Adquisició Remota i Tractament de la Informació (SARTI), Universitat Politècnica de Catalunya. TIEG - Terrassa Industrial Electronics Group, Nasreddine, Kamal, Universitat Politècnica de Catalunya. SARTI - Centre de Desenvolupament Tecnològic de Sistemes d'Adquisició Remota i Tractament de la Informació, Universitat Politècnica de Catalunya. (TIEG) - Terrassa Industrial Electronics Group, UPC, Universitat Politècnica de Catalunya [Barcelona] (UPC), Lab-STICC_ENIB_CID_TOMS, Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance (Lab-STICC), École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Télécom Bretagne-Institut Brestois du Numérique et des Mathématiques (IBNM), Université de Brest (UBO)-Université européenne de Bretagne - European University of Brittany (UEB)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Télécom Bretagne-Institut Brestois du Numérique et des Mathématiques (IBNM), Université de Brest (UBO)-Université européenne de Bretagne - European University of Brittany (UEB)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)
Předmět:
[SDE] Environmental Sciences
0106 biological sciences
Red mullet
[SPI] Engineering Sciences [physics]
Feature extraction
Aquaculture
Fish stock
010603 evolutionary biology
01 natural sciences
Fons marins -- Investigació
[SPI]Engineering Sciences [physics]
Image processing
medicine
Enginyeria agroalimentària::Ciències de la terra i de la vida::Zoologia [Àrees temàtiques de la UPC]
14. Life underwater
Fourier
Anàlisi de

North sea
Robustness
Biology
Accuracy
Otolith
biology
business.industry
010604 marine biology & hydrobiology
Enginyeria de la telecomunicació::Processament del senyal::Reconeixement de formes [Àrees temàtiques de la UPC]
Wavelet transform
Shape
Pattern recognition
Pattern recognition systems
biology.organism_classification
Form perception
Otoliths
Europe
Geography
medicine.anatomical_structure
Otòlits
[SDE]Environmental Sciences
Principal component analysis
Artificial intelligence
Imatges -- Processament -- Aplicacions
business
Cartography
Shape analysis (digital geometry)
Zdroj: Recercat. Dipósit de la Recerca de Catalunya
Universitat Jaume I
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
IEEE International Image Processing, Applications and Systems Conference (IPAS'14)
IEEE International Image Processing, Applications and Systems Conference (IPAS'14), Nov 2014, Hammamet, Tunisia
HAL
Popis: The shape analysis of otoliths, which are calcified structures in the inner ear of teleostean fishes, is known to be particularly relevant to address species identification and stock discrimination. Generally, scientists use classical methodologies of statistical analysis and shape recognition such as Fourier shape descriptors and Principal Component Analysis (PCA). These methods are subject to several limitations mainly to their incapacity to locate irregularities because they are based on global characterization of shape. Recently, more advanced techniques are proposed in this context in order to improve classification accuracies. The first recent method exploits the potential of shape geodesics which rely on local shape features for classification issues. The second one addresses the Best-Basis paradigm which combines the Wavelet Transform, and the potential of statistical analysis in order to fully automate the selection process of efficient features for classification. These methods have been shown to significantly outperform the standard approaches but they are not compared together yet. This study compare these two methods on a real dataset. The comparison is performed on 600 striped red mullet calcified structures collected for the NESPMAN European project. For each method, performances are reported for the classification of samples coming from three geographical zones in the Northwest European seas: the Bay of Biscay, a mixing zone composed of the Celtic Sea and the Western English Channel and a northern zone composed of the Eastern English Channel and the North Sea. Comparison shows that both methods lead to same conclusions.
Databáze: OpenAIRE