Nucleation of helium in liquid lithium at 843 K and high pressures
Autor: | Jordi Martí, Ferran Mazzanti, Grigori E. Astrakharchik, Lluís Batet, Laura Portos-Amill, Borja Pedreño |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. SIMCON - First-principles approaches to condensed matter physics: quantum effects and complexity, Universitat Politècnica de Catalunya. ANT - Advanced Nuclear Technologies Research Group |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) Materials; Volume 15; Issue 8; Pages: 2866 |
DOI: | 10.3390/ma15082866 |
Popis: | Fusion energy stands out as a promising alternative for a future decarbonised energy system. In order to be sustainable, future fusion nuclear reactors will have to produce their own tritium. In the so-called breeding blanket of a reactor, the neutron bombardment of lithium will produce the desired tritium, but also helium, which can trigger nucleation mechanisms owing to the very low solubility of helium in liquid metals. An understanding of the underlying microscopic processes is important for improving the efficiency, sustainability and reliability of the fusion energy conversion process. The spontaneous creation of helium droplets or bubbles in the liquid metal used as breeding material in some designs may be a serious issue for the performance of the breeding blankets. This phenomenon has yet to be fully studied and understood. This work aims to provide some insight on the behaviour of lithium and helium mixtures at experimentally corresponding operating conditions (843 K and pressures between 108 and 1010 Pa). We report a microscopic study of the thermodynamic, structural and dynamical properties of lithium–helium mixtures, as a first step to the simulation of the environment in a nuclear fusion power plant. We introduce a new microscopic model devised to describe the formation of helium droplets in the thermodynamic range considered. Our model predicts the formation of helium droplets at pressures around 109 Pa, with radii between 1 and 2 Å. The diffusion coefficient of lithium (2 Å2/ps) is in excellent agreement with reference experimental data, whereas the diffusion coefficient of helium is in the range of 1 Å2/ps and tends to decrease as pressure increases. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |