On the Lower Bound of the Derived Length of the Unit Group of a Nontorsion Group Algebra

Autor: Ernesto Spinelli, Sudarshan K. Sehgal, Gregory T. Lee, Tibor Juhász
Rok vydání: 2019
Předmět:
Zdroj: Algebras and Representation Theory. 23:457-466
ISSN: 1572-9079
1386-923X
DOI: 10.1007/s10468-019-09855-x
Popis: Let G be a nonabelian nilpotent group and F a field of characteristic p > 2, such that the unit group \(\mathcal {U}(FG)\) of the group ring FG is solvable and G contains a p-element. Here we provide a lower bound for the derived length of \(\mathcal {U}(FG)\) that corrects the result from Lee et al. (Algebr. Represent. Theory 17, 1597–1601 2014) when G is nontorsion and \(G^{\prime }\) is a finite p-group.
Databáze: OpenAIRE