Deviations of ergodic sums for toral translations II. Boxes

Autor: Bassam Fayad, Dmitry Dolgopyat
Rok vydání: 2020
Předmět:
Zdroj: Publications mathématiques de l'IHÉS. 132:293-352
ISSN: 1618-1913
0073-8301
Popis: We study the Kronecker sequence $\{n\alpha\}_{n\leq N}$ on the torus ${\mathbb T}^d$ when $\alpha$ is uniformly distributed on ${\mathbb T}^d.$ We show that the discrepancy of the number of visits of this sequence to a random box, normalized by $\ln^d N$, converges as $N\to\infty$ to a Cauchy distribution. The key ingredient of the proof is a Poisson limit theorem for the Cartan action on the space of $d+1$ dimensional lattices.
Comment: 56 pages. This is a revised and expanded version of the prior submissions
Databáze: OpenAIRE