Development of methods for the preparation of radiopure 82Se sources for the SuperNEMO neutrinoless double-beta decay experiment
Autor: | J. J. Evans, F. Perrot, Masaharu Nomachi, Jihane Maalmi, Dominique Breton, D. Duchesneau, P. Guzowski, Y. Lemière, X.R. Liu, R. Breier, S. Jullian, Hector Gomez, S. I. Konovalov, V. Egorov, F.A. Tashimova, Y. A. Ramachers, G. Claverie, B. Richards, V. B. Brudanin, J.P. Cesar, S. Torre, F. Mamedov, R. Salazar, Karol Holý, D. Waters, X. Sarazin, V. V. Timkin, V.I. Umatov, O.I. Kochetov, A. A. Mirsagatova, C. Vilela, A. V. Rakhimov, C. Hugon, Juergen Thomas, G. Eurin, I. Stekl, J. S. Ricol, J. Mott, I. I. Sadikov, A. S. Barabash, Lukas Fajt, D.V. Filosofov, H. Ohsumi, E. Rukhadze, T. Le Noblet, Ch. Bourgeois, Fedor Šimkovic, Igor Nemchenok, A. Huber, N.I. Rukhadze, A. Minotti, N.A. Mirzayev, L. Simard, A. Smetana, Vit Vorobel, S. Snow, P Pridal, J. Busto, A. Chopra, Z. J. Liptak, C. Cerna, G. Warot, Karol Lang, D. V. Karaivanov, H. Burešova, V. Kovalenko, M. Bongrand, E. Chauveau, Pavel P. Povinec, A. Žukauskas, A. Rebii, F. Nova, J. K. Sedgbeer, B. Morgan, A. Remoto, A. Basharina-Freshville, M. Kauer, R. B. Pahlka, Ruben Saakyan, F. Mauger, Guillaume Lutter, Karel Smolek, X. Garrido, B. Soulé, S. Calvez, A. A. Klimenko, G. Oliviéro, V.I. Tretyak, R. L. Flack, Michele Cascella, Vl. I. Tretyak, R. Hodák, S. Söldner-Rembold, Yu. Shitov, P. Loaiza, Ch. Marquet, B. Guillon, A.A. Smolnikov, M. Zampaolo, S. Blot, M. Spavorova, I. Moreau, E. Birdsall, V. Palušová, Joleen Pater, A. Jeremie, F. Piquemal, M. Macko, F. Delalee, S. De Capua |
---|---|
Přispěvatelé: | Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique des Particules de Marseille (CPPM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Aix Marseille Université (AMU), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique corpusculaire de Caen (LPCC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Rakhimov, A, Barabash, A, Basharina-Freshville, A, Blot, S, Bongrand, M, Bourgeois, C, Breton, D, Breier, R, Birdsall, E, Brudanin, V, Buresova, H, Busto, J, Calvez, S, Cascella, M, Cerna, C, Cesar, J, Chauveau, E, Chopra, A, Claverie, G, De Capua, S, Delalee, F, Duchesneau, D, Egorov, V, Eurin, G, Evans, J, Fajt, L, Filosofov, D, Flack, R, Garrido, X, Gomez, H, Guillon, B, Guzowski, P, Hodak, R, Holy, K, Huber, A, Hugon, C, Jeremie, A, Jullian, S, Karaivanov, D, Kauer, M, Klimenko, A, Kochetov, O, Konovalov, S, Kovalenko, V, Lang, K, Lemiere, Y, Le Noblet, T, Liptak, Z, Liu, X, Loaiza, P, Lutter, G, Maalmi, J, Macko, M, Mamedov, F, Marquet, C, Mauger, F, Minotti, A, Mirsagatova, A, Mirzayev, N, Moreau, I, Morgan, B, Mott, J, Nemchenok, I, Nomachi, M, Nova, F, Ohsumi, H, Oliviero, G, Pahlka, R, Pater, J, Palusova, V, Perrot, F, Piquemal, F, Povinec, P, Pridal, P, Ramachers, Y, Rebii, A, Remoto, A, Richards, B, Ricol, J, Rukhadze, E, Rukhadze, N, Saakyan, R, Sadikov, I, Salazar, R, Sarazin, X, Sedgbeer, J, Shitov, Y, Simkovic, F, Simard, L, Smetana, A, Smolek, K, Smolnikov, A, Snow, S, Soldner-Rembold, S, Soule, B, Spavorova, M, Stekl, I, Tashimova, F, Thomas, J, Timkin, V, Torre, S, Tretyak, V, Umatov, V, Vilela, C, Vorobel, V, Warot, G, Waters, D, Zampaolo, M, Zukauskas, A, Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
SuperNEMO
Technology purification ion exchange chromatography SuperNEMO LSM Modane mass spectrometry neutron activation analysis purification Selenium-82 measurement methods Ion chromatography chemistry.chemical_element Selenium-82 fabrication Mass spectrometry 01 natural sciences neutron activation analysi NO Neutrino Ettore Majorana Observatory LSM Modane double-beta decay: (0neutrino) Decantation 0103 physical sciences 0302 Inorganic Chemistry Chemistry Inorganic & Nuclear Physical and Theoretical Chemistry Neutron activation analysis 010306 general physics Nuclear Science & Technology background: radioactivity mass spectrometry [PHYS]Physics [physics] Detection limit Science & Technology 010308 nuclear & particles physics Radiochemistry IMPURITIES ion exchange chromatography Contamination Chemistry chemistry SPECTROMETRY 13. Climate action sulfur Physical Sciences ion: exchange Inorganic & Nuclear Chemistry selenium: production selenium: nuclide oxygen Selenium neutron activation analysis |
Zdroj: | Rakhimov, A V, Barabash, A S, Basharina-Freshville, A, Blot, S, Bongrand, M, Bourgeois, C, Breton, D, Breier, R, Birdsall, E, Brudanin, V B, Burešova, H, Busto, J, Calvez, S, Cascella, M, Cerna, C, Cesar, J P, Chauveau, E, Chopra, A, Claverie, G, De Capua, S, Delalee, F, Duchesneau, D, Egorov, V G, Eurin, G, Evans, J J, Fajt, L, Filosofov, D V, Flack, R, Garrido, X, Gomez, H, Guillon, B, Guzowski, P, Hodák, R, Holý, K, Huber, A, Hugon, C, Jeremie, A, Jullian, S, Karaivanov, D V, Kauer, M, Klimenko, A A, Kochetov, O I, Konovalov, S I, Kovalenko, V, Lang, K, Lemière, Y, Le Noblet, T, Liptak, Z, Liu, X R, Loaiza, P, Lutter, G, Maalmi, J, MacKo, M, Mamedov, F, Marquet, C, Mauger, F, Minotti, A, Mirsagatova, A A, Mirzayev, N A, Moreau, I, Morgan, B, Mott, J, Nemchenok, I B, Nomachi, M, Nova, F, Ohsumi, H, Oliviero, G, Pahlka, R B, Pater, J R, Palušová, V, Perrot, F, Piquemal, F, Povinec, P, Pridal, P, Ramachers, Y A, Rebii, A, Remoto, A, Richards, B, Ricol, J S, Rukhadze, E, Rukhadze, N I, Saakyan, R, Sadikov, I I, Salazar, R, Sarazin, X, Sedgbeer, J, Shitov, Y A, Šimkovic, F, Simard, L, Smetana, A, Smolek, K, Smolnikov, A A, Snow, S, Söldner-Rembold, S, Soulé, B, Špavorova, M, Štekl, I, Tashimova, F A, Thomas, J, Timkin, V, Torre, S, Tretyak, V I, Tretyak, V I, Umatov, V I, Vilela, C, Vorobel, V, Warot, G, Waters, D, Zampaolo, M & Zukauskas, A 2019, ' Development of methods for the preparation of radiopure 82 Se sources for the SuperNEMO neutrinoless double-beta decay experiment ', Radiochimica Acta . https://doi.org/10.1515/ract-2019-3129 Radiochim.Acta Radiochim.Acta, 2020, 108 (2), pp.87-97. ⟨10.1515/ract-2019-3129⟩ Radiochimica Acta Radiochimica Acta, 2020, 108 (2), pp.87-97. ⟨10.1515/ract-2019-3129⟩ |
ISSN: | 0033-8230 2193-3405 |
Popis: | International audience; AbstractA radiochemical method for producing 82Se sources with an ultra-low level of contamination of natural radionuclides (40K, decay products of 232Th and 238U) has been developed based on cation-exchange chromatographic purification with reverse removal of impurities. It includes chromatographic separation (purification), reduction, conditioning (which includes decantation, centrifugation, washing, grinding, and drying), and 82Se foil production. The conditioning stage, during which highly dispersed elemental selenium is obtained by the reduction of purified selenious acid (H2SeO3) with sulfur dioxide (SO2) represents the crucial step in the preparation of radiopure 82Se samples. The natural selenium (600 g) was first produced in this procedure in order to refine the method. The technique developed was then used to produce 2.5 kg of radiopure enriched selenium (82Se). The produced 82Se samples were wrapped in polyethylene (12 μm thick) and radionuclides present in the sample were analyzed with the BiPo-3 detector. The radiopurity of the plastic materials (chromatographic column material and polypropylene chemical vessels), which were used at all stages, was determined by instrumental neutron activation analysis. The radiopurity of the 82Se foils was checked by measurements with the BiPo-3 spectrometer, which confirmed the high purity of the final product. The measured contamination level for 208Tl was 8–54 μBq/kg, and for 214Bi the detection limit of 600 μBq/kg has been reached. |
Databáze: | OpenAIRE |
Externí odkaz: |