A noninvasive method to estimate arterial impedance by means of assessment of local diameter change and the local center-line blood flow velocity using ultrasound
Autor: | Peter J. Brands, Mcm Marcel Rutten, Robert S. Reneman, Apg Arnold Hoeks |
---|---|
Přispěvatelé: | Cardiovascular Biomechanics |
Jazyk: | angličtina |
Rok vydání: | 1996 |
Předmět: |
Flow waveform
medicine.medical_specialty Materials science Acoustics and Ultrasonics Radiological and Ultrasound Technology Biophysics Pulsatile flow Hemodynamics Blood Pressure Blood volume Arteries Blood flow Surgery Models Structural medicine.anatomical_structure Womersley number Ultrasonography Doppler Pulsed Vascular resistance medicine otorhinolaryngologic diseases Waveform Vascular Resistance Radiology Nuclear Medicine and imaging Blood Flow Velocity Biomedical engineering |
Zdroj: | Ultrasound in Medicine and Biology, 22(7), 895-905. Elsevier |
ISSN: | 0301-5629 |
Popis: | Vascular impedance is defined as the ratio between the frequency components of the local blood pressure waveform and those of the local blood volume flow waveform. Assessment of vascular impedance is, for example, important to study heart load and distal vascular bed vasomotricity. However, only a few studies on vascular impedance have been performed in humans because pulsatile pressure and volume flow waveforms, simultaneously recorded at the same location, are difficult to obtain noninvasively. The noninvasive assessment of arterial impedance as described in this study is based on the replacement of the pressure waveform by the distension (change in diameter) waveform and the volume flow waveform by the center-line blood flow velocity waveform. Both waveforms can simultaneously and accurately be assessed by means of pulsed ultrasound. It will be shown that, depending on the Womersley number, the volume flow waveform may be replaced by the center-line blood flow velocity waveform for a given frequency range and that the pressure waveform may be replaced by the distension waveform for a wide frequency range. The validation of the proposed ultrasound method was performed through an in vitro study in a flow model with a distensible tube terminated with a hydraulic load (modified windkessel model). It is shown that, in vitro, the proposed method gives the same results as the local spectral pressure-flow relationship. |
Databáze: | OpenAIRE |
Externí odkaz: |