Parkinson’s disease with early motor complications: predicting EQ-5D- 3L utilities from PDQ-39 data in the EARLYSTIM trial
Autor: | W. M. Michael Schüpbach, Gillian Barnett, Isabelle Durand-Zaleski, Mehdi Zahra, Silke Walleser Autiero, Michal Górecki |
---|---|
Přispěvatelé: | Medtronic International Trading Sarl [Tolochenaz], Hôpital Hôtel-Dieu [Paris], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Service de santé publique [Mondor], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpital Henri Mondor-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), Health Technology Assessment Consulting [Kraków], Gillian Barnett and Associates [Dunfanaghy], Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM), Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Service de neurologie 1 [CHU Pitié-Salpétrière], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Bern University Hospital [Berne] (Inselspital), Universität Bern [Bern], Centre d'investigation clinique Neurosciences [CHU Pitié Salpêtrière] (CIC Neurosciences), CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Institut du Cerveau = Paris Brain Institute (ICM), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Service de Neurologie [CHU Pitié-Salpêtrière], IFR70-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Universität Bern [Bern] (UNIBE), Gestionnaire, Hal Sorbonne Université, Centre d'investigation clinique pluridisciplinaire [CHU Pitié Salpêtrière] (CIC-P 1421), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP] |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Male
Quality of life medicine.medical_specialty Parkinson's disease Deep brain stimulation medicine.medical_treatment Cost-Benefit Analysis lcsh:Computer applications to medicine. Medical informatics 03 medical and health sciences 0302 clinical medicine Utility EQ-5D Surveys and Questionnaires Post-hoc analysis medicine Humans 030212 general & internal medicine [SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] Multinomial logistic regression [SDV.IB] Life Sciences [q-bio]/Bioengineering business.industry 030503 health policy & services Research Public Health Environmental and Occupational Health Parkinson Disease General Medicine Middle Aged Physical Functional Performance medicine.disease [SDV.SPEE] Life Sciences [q-bio]/Santé publique et épidémiologie Physical therapy Parkinson’s disease lcsh:R858-859.7 Female [SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] [SDV.IB]Life Sciences [q-bio]/Bioengineering [SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie Analysis of variance Metric (unit) 0305 other medical science business Algorithms |
Zdroj: | Health and Quality of Life Outcomes Health and Quality of Life Outcomes, BioMed Central, 2020, 18 (1), pp.49. ⟨10.1186/s12955-020-01299-y⟩ Health and Quality of Life Outcomes, 2020, 18 (1), pp.49. ⟨10.1186/s12955-020-01299-y⟩ Health and Quality of Life Outcomes, Vol 18, Iss 1, Pp 1-8 (2020) |
ISSN: | 1477-7525 |
DOI: | 10.1186/s12955-020-01299-y⟩ |
Popis: | Background A utility value is a health-related quality of life metric (HRQoL) metric used in a cost-effectiveness analysis. While utilities as outcomes in the treatment of advanced Parkinson’s disease (PD) with deep brain stimulation (DBS) are available, they do not currently exist for PD with early motor complications. The objectives of this study were to predict utilities from observed disease-specific HRQoL data using two mapping algorithms, and investigate their performance in terms of longitudinal changes within and between treatment groups, and distribution by PD severity. Methods This is a post hoc analysis of data from the EARLYSTIM trial of DBS compared with best medical therapy (BMT) in PD patients with early motor complications We used two published algorithms comprising ordinal and multinomial regression models to map EQ-5D-3L utilities from observed PD-specific 39 item Questionnaire (PDQ-39) scores in EARLYSTIM. Utilities were calculated using the predicted functioning levels of EQ-5D-3L dimensions and the established EQ-5D-3L UK tariffs. Statistical analyses (analysis of variance, two-tailed Student’s t-test) were used to test the change from baseline within groups and difference in change from baseline between groups in utilities. Boxplots were developed to investigate the distribution of predicted utilities by PD severity, measured using the Hoehn and Yahr scale. Results The change from baseline in predicted mean utilities was statistically significant at all visits up to 24 months for the DBS group (p p = 0.04) for the BMT group with one algorithm. With both algorithms, the between-groups difference in change from baseline in predicted mean utilities favored DBS at all follow-up visits (p Conclusions Among PD patients with early motor complications, utilities predicted by both mapping algorithms using PDQ-39 data demonstrated a statistically and clinically meaningful improvement with DBS compared with BMT. It was not possible to conclude if one algorithm was more responsive than other. In the absence of utilities collected directly from patients, mapping is an acceptable option permitting economic evaluations to be undertaken. |
Databáze: | OpenAIRE |
Externí odkaz: |