Cardinal characteristics at $$\aleph_\omega$$
Autor: | Saharon Shelah, Moti Gitik, Shimon Garti |
---|---|
Rok vydání: | 2019 |
Předmět: |
Aleph
Mathematics::General Mathematics General Mathematics 010102 general mathematics Mathematics::General Topology Measurable cardinal Mathematics - Logic 010103 numerical & computational mathematics 01 natural sciences Omega 03E17 03E55 Combinatorics Mathematics::Logic Consistency (statistics) FOS: Mathematics 0101 mathematics Logic (math.LO) Mathematics |
Zdroj: | Acta Mathematica Hungarica. 160:320-336 |
ISSN: | 1588-2632 0236-5294 |
DOI: | 10.1007/s10474-019-00971-0 |
Popis: | We prove the consistency of $$\mathfrak{u}_{\aleph_\omega} < 2^{\aleph_\omega}$$. We also show that the consistency strength of this statement is the existence of a measurable cardinal $$\kappa$$ with $$o(\kappa) = \kappa^{++}$$ . |
Databáze: | OpenAIRE |
Externí odkaz: |