The Role of Cholesterol Esterification in Ovarian Steroidogenesis: Studies in Cultured Swine Granulosa Cells Using a Novel Inhibitor of Acyl Coenzyme A:Cholesterol Acyltransferase*
Autor: | Johannes D. Veldhuis, James C. Garmey, Jerome F. Strauss, Lisa A. Kolp, Patricia A. Klase, Diana Juchter, Susan L. Silavin |
---|---|
Rok vydání: | 1985 |
Předmět: |
medicine.medical_specialty
Swine Sterol O-acyltransferase Oleic Acids Cholesterol 7 alpha-hydroxylase chemistry.chemical_compound Endocrinology Cricetinae Internal medicine medicine Animals Insulin Organosilicon Compounds Cells Cultured Progesterone Granulosa Cells Estradiol Cholesterol Reverse cholesterol transport Luteinizing Hormone Amides Sterol Lipoproteins LDL Kinetics chemistry Low-density lipoprotein Microsome Cholesteryl ester Female lipids (amino acids peptides and proteins) Cholesterol Esters Follicle Stimulating Hormone Oleic Acid Sterol O-Acyltransferase |
Zdroj: | Endocrinology. 116:25-30 |
ISSN: | 1945-7170 0013-7227 |
Popis: | We have used a novel competitive inhibitor of acyl coenzyme A:cholesterol acyltransferase (ACAT), Sandoz compound 58-035 [3-(decyldimethyl-silyl)N-[2-(4-methyl-phenyl)1-phenylethyl propanamide], to assess the importance of the cholesterol esterification reaction in ovarian steroidogenesis. Compound 58-035 markedly (greater than or equal to 96%) inhibited ACAT activity of swine ovarian microsomes in a dose-dependent (0.1-3.5 micrograms/ml) fashion. In addition, treatment of cultured granulosa cells with this fatty acylamide effectively (greater than or equal to 98%) suppressed hormonally stimulated cholesterol esterification, as assessed by the incorporation of [3H]oleic acid into cholesteryl ester. Accordingly, we used this inhibitor to test the role of cholesterol esterification in ovarian cells. In cultures with limited or no serum supplementation, long term (2- to 6-day) treatment of granulosa cells with compound 58-035 significantly increased basal progesterone production and amplified by 2- to 10-fold the stimulatory actions of trophic hormones, such as estradiol, FSH, estradiol combined with FSH, or insulin. The amplifying effect of ACAT inhibition on hormone-stimulated progesterone production could be mimicked by providing exogenous cholesterol substrate in the form of low density lipoprotein (LDL). Cotreatment with compound 58-035 and LDL resulted in no further augmentation of steroidogenesis. In contrast to the facilitative effects of compound 58-035 in longer term cultures, this ACAT inhibitor did not alter progesterone biosynthesis acutely (2-20 h) in swine or hamster ovarian cells. These observations suggest that there is an obligatory partitioning of some sterol into the ester pool in granulosa cells. In times of diminished availability of cholesterol, inhibition of the esterification pathway can make additional cholesterol available for use in steroid hormone biosynthesis. Thus, in the intact Graafian follicle, where LDL cholesterol delivery to granulosa cells and intracellular cholesteryl ester stores are limited, regulation of the ACAT reaction may significantly modulate rates of progesterone biosynthesis. The present results indicate that the use of a selective inhibitor of cholesterol esterification can permit one to probe the functional significance of the esterification reaction in steroidogenic cells. |
Databáze: | OpenAIRE |
Externí odkaz: |