Properties of Beurling-type submodules via Agler decompositions

Autor: Kelly Bickel, Constanze Liaw
Rok vydání: 2017
Předmět:
Zdroj: Journal of Functional Analysis. 272:83-111
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2016.10.007
Popis: In this paper, we study operator-theoretic properties of the compressed shift operators $S_{z_1}$ and $S_{z_2}$ on complements of submodules of the Hardy space over the bidisk $H^2(\mathbb{D}^2)$. Specifically, we study Beurling-type submodules - namely submodules of the form $\theta H^2(\mathbb{D}^2)$ for $\theta$ inner - using properties of Agler decompositions of $\theta$ to deduce properties of $S_{z_1}$ and $S_{z_2}$ on model spaces $H^2(\mathbb{D}^2) \ominus \theta H^2(\mathbb{D}^2)$. Results include characterizations (in terms of $\theta$) of when a commutator $[S_{z_j}^*, S_{z_j}]$ has rank $n$ and when subspaces associated to Agler decompositions are reducing for $S_{z_1}$ and $S_{z_2}$. We include several open questions.
Comment: 25 pages
Databáze: OpenAIRE