An adaptive nested source term iteration for radiative transfer equations
Autor: | Wolfgang Dahmen, Felix Gruber, Olga Mula |
---|---|
Přispěvatelé: | University of South Carolina [Columbia], Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), COmputational Mathematics for bio-MEDIcal Applications (COMMEDIA), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), This research was supported by the NSF Grant DMS 1720297, and by the SmartState and Williams-Hedberg Foundation., Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) |
Rok vydání: | 2020 |
Předmět: |
Computational complexity theory
Function space Matrix compression 010103 numerical & computational mathematics 01 natural sciences DPG transport solver [MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM] Operator (computer programming) Convergence (routing) FOS: Mathematics Radiative transfer Applied mathematics Mathematics - Numerical Analysis 0101 mathematics Iteration in function space Linear Boltzmann Kinetic problems Parametric statistics Mathematics Algebra and Number Theory Applied Mathematics Linear system Hilbert–Schmidt decomposition Numerical Analysis (math.NA) 010101 applied mathematics Computational Mathematics A priori and a posteriori Fast application of scattering operator [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] A posteriori bounds |
Zdroj: | Mathematics of Computation Mathematics of Computation, American Mathematical Society, 2020, ⟨10.1090/mcom/3505⟩ Mathematics of Computation, 2020, ⟨10.1090/mcom/3505⟩ |
ISSN: | 1088-6842 0025-5718 |
Popis: | International audience; We propose a new approach to the numerical solution of radiative transfer equations with certified a posteriori error bounds. A key role is played by stable Petrov--Galerkin type variational formulations of parametric transport equations and corresponding radiative transfer equations. This allows us to formulate an iteration in a suitable, infinite dimensional function space that is guaranteed to converge with a fixed error reduction per step. The numerical scheme is then based on approximately realizing this iteration within dynamically updated accuracy tolerances that still ensure convergence to the exact solution. To advance this iteration two operations need to be performed within suitably tightened accuracy tolerances. First, the global scattering operator needs to be approximately applied to the current iterate within a tolerance comparable to the current accuracy level. Second, parameter dependent linear transport equations need to be solved, again at the required accuracy of the iteration. To ensure that the stage dependent error tolerances are met, one has to employ rigorous a posteriori error bounds which, in our case, rest on a Discontinuous Petrov--Galerkin (DPG) scheme. These a posteriori bounds are not only crucial for guaranteeing the convergence of the perturbed iteration but are also used to generate adapted parameter dependent spatial meshes. This turns out to significantly reduce overall computational complexity. Since the global operator is only applied, we avoid the need to solve linear systems with densely populated matrices. Moreover, the approximate application of the global scatterer accelerated through low-rank approximation and matrix compression techniques. The theoretical findings are illustrated and complemented by numerical experiments with non-trivial scattering kernels. |
Databáze: | OpenAIRE |
Externí odkaz: |