From Negative to Positive Diagnosis: Structural Variation Could Be the Second Mutation You Are Looking for in a Recessive Autosomal Gene

Autor: Ioanna Pyromali, Nesrine Benslimane, Frédéric Favreau, Cyril Goizet, Leila Lazaro, Martine Vitry, Paco Derouault, Franck Sturtz, Corinne Magdelaine, Anne-Sophie Lia
Rok vydání: 2022
Předmět:
Zdroj: Journal of Personalized Medicine; Volume 12; Issue 2; Pages: 212
ISSN: 2075-4426
DOI: 10.3390/jpm12020212
Popis: Next-generation sequencing (NGS) allows the detection of plentiful mutations increasing the rate of patients getting a positive diagnosis. However, while single-nucleotide variants (SNVs) or small indels can be easily detected, structural variations (SVs) such as copy number variants (CNVs) are often not researched. In Charcot–Marie–Tooth disease (CMT), the most common hereditary peripheral neuropathy, the PMP22-duplication was the first variation detected. Since then, more than 90 other genes have been associated with CMT, with point mutations or small indels mostly described. Herein, we present a personalized approach we performed to obtain a positive diagnosis of a patient suffering from demyelinating CMT. His NGS data were aligned to the human reference sequence but also studied using the CovCopCan software, designed to detect large CNVs. This approach allowed the detection of only one mutation in SH3TC2, the frequent p.Arg954*, while SH3TC2 is known to be responsible for autosomal recessive demyelinating CMT forms. Interestingly, by modifying the standard CovCopCan use, we detected the second mutation of this patient corresponding to a 922 bp deletion in SH3TC2 (Chr5:148,390,609-Chr5:148,389,687), including only one exon (exon 14). This highlights that SVs, different from PMP22 duplication, can be responsible for peripheral neuropathy and should be searched systematically. This approach could also be employed to improve the diagnosis of all inherited diseases.
Databáze: OpenAIRE