Three techniques for state order estimation of hidden Markov models
Autor: | Mille Millnert, Predrag Pucar |
---|---|
Rok vydání: | 2002 |
Předmět: |
Automatic control
Prediction theory Stochastic process business.industry Laser ranging Pattern recognition Image processing Image segmentation White noise Least squares approximation Reglerteknik Maximum a posteriori estimation Hidden Markov models Artificial intelligence Hidden semi-Markov model Hidden Markov model business Algorithm State estimation Coding (social sciences) Mathematics |
Zdroj: | ICASSP |
DOI: | 10.1109/icassp.1995.480089 |
Popis: | In this contribution three examples of techniques that can be used for state order estimation of hidden Markov models are given The methods are also exem plied using real laser range data and the computa tional burden of the three methods is discussed Two techniques Maximum Description Length and Maximum a Posteriori Estimate are shown to be very sim ilar under certain circumstances The third technique Predictive Least Squares is novel in this context |
Databáze: | OpenAIRE |
Externí odkaz: |