Predicting the dark matter velocity distribution in galactic structures: tests against hydrodynamic cosmological simulations
Autor: | Martin Stref, Julien Lavalle, Thomas Lacroix, Emmanuel Nezri, A. Nuñez-Castiñeyra |
---|---|
Přispěvatelé: | Laboratoire Univers et Particules de Montpellier (LUPM), Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Marseille (LAM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy-le-Vieux de Physique Théorique (LAPTH), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), ANR-18-CE31-0006,GaDaMa,Matière Noire Galactique(2018) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Cosmology and Nongalactic Astrophysics (astro-ph.CO)
Structure formation Dark matter galaxy: dark matter FOS: Physical sciences Primordial black hole dark matter: phase space Astrophysics Astrophysics::Cosmology and Extragalactic Astrophysics anisotropy Parameter space Gravitational microlensing 01 natural sciences Galactic dynamics High Energy Physics - Phenomenology (hep-ph) 0103 physical sciences structure formation galaxy: mass numerical calculations Astrophysics::Galaxy Astrophysics Physics 010308 nuclear & particles physics Astronomy and Astrophysics Observable dark matter searches Astrophysics - Astrophysics of Galaxies Galaxy formation: structure Stars High Energy Physics - Phenomenology annihilation Astrophysics of Galaxies (astro-ph.GA) [PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] hydrodynamics dark matter: velocity [PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] black hole: primordial Astrophysics - Cosmology and Nongalactic Astrophysics |
Zdroj: | JCAP JCAP, 2020, 10, pp.031. ⟨10.1088/1475-7516/2020/10/031⟩ |
DOI: | 10.1088/1475-7516/2020/10/031⟩ |
Popis: | Reducing theoretical uncertainties in Galactic dark matter (DM) searches is an important challenge as several experiments are now delving into the parameter space relevant to popular (particle or not) candidates. Since many DM signal predictions rely on the knowledge of the DM velocity distribution---direct searches, capture by stars, p-wave-suppressed or Sommerfeld-enhanced annihilation rate, microlensing of primordial black holes, etc.---it is necessary to assess the accuracy of our current theoretical handle. Beyond Maxwellian approximations or ad-hoc extrapolations of fits on cosmological simulations, approaches have been proposed to self-consistently derive the DM phase-space distribution only from the detailed mass content of the Galaxy and some symmetry assumptions (e.g. the Eddington inversion and its anisotropic extensions). Although theoretically sound, these methods are still based on simplifying assumptions and their relevance to real galaxies can be questioned. In this paper, we use zoomed-in cosmological simulations to quantify the associated uncertainties. Assuming isotropy, we predict the speed distribution and its moments from the DM and baryonic content measured in simulations, and compare them with the true ones. Taking as input galactic mass models fitted on full simulation data, we reach a predictivity down to ~ 10% for some velocity-related observables, significantly better than some Maxwellian models. This moderate theoretical error is particularly encouraging at a time when stellar surveys like the Gaia mission should allow us to improve constraints on Galactic mass models. 60 pages, 31 figures, matches the version published in JCAP |
Databáze: | OpenAIRE |
Externí odkaz: |